Metamath Proof Explorer


Theorem fvn0elsuppb

Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion fvn0elsuppb BVXBGFnBGXXsuppG

Proof

Step Hyp Ref Expression
1 fvn0elsupp BVXBGFnBGXXsuppG
2 1 exp43 BVXBGFnBGXXsuppG
3 2 3imp BVXBGFnBGXXsuppG
4 simp3 BVXBGFnBGFnB
5 simp1 BVXBGFnBBV
6 0ex V
7 6 a1i BVXBGFnBV
8 elsuppfn GFnBBVVXsuppGXBGX
9 4 5 7 8 syl3anc BVXBGFnBXsuppGXBGX
10 simpr XBGXGX
11 9 10 syl6bi BVXBGFnBXsuppGGX
12 3 11 impbid BVXBGFnBGXXsuppG