Metamath Proof Explorer


Theorem fvrcllb1d

Description: A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvrcllb1d.r
|- ( ph -> R e. _V )
Assertion fvrcllb1d
|- ( ph -> R C_ ( r* ` R ) )

Proof

Step Hyp Ref Expression
1 fvrcllb1d.r
 |-  ( ph -> R e. _V )
2 dfrcl4
 |-  r* = ( r e. _V |-> U_ n e. { 0 , 1 } ( r ^r n ) )
3 prex
 |-  { 0 , 1 } e. _V
4 3 a1i
 |-  ( ph -> { 0 , 1 } e. _V )
5 1ex
 |-  1 e. _V
6 5 prid2
 |-  1 e. { 0 , 1 }
7 6 a1i
 |-  ( ph -> 1 e. { 0 , 1 } )
8 2 1 4 7 fvmptiunrelexplb1d
 |-  ( ph -> R C_ ( r* ` R ) )