Metamath Proof Explorer


Theorem fvrcllb1d

Description: A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvrcllb1d.r ( 𝜑𝑅 ∈ V )
Assertion fvrcllb1d ( 𝜑𝑅 ⊆ ( r* ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvrcllb1d.r ( 𝜑𝑅 ∈ V )
2 dfrcl4 r* = ( 𝑟 ∈ V ↦ 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) )
3 prex { 0 , 1 } ∈ V
4 3 a1i ( 𝜑 → { 0 , 1 } ∈ V )
5 1ex 1 ∈ V
6 5 prid2 1 ∈ { 0 , 1 }
7 6 a1i ( 𝜑 → 1 ∈ { 0 , 1 } )
8 2 1 4 7 fvmptiunrelexplb1d ( 𝜑𝑅 ⊆ ( r* ‘ 𝑅 ) )