Description: A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvrcllb1d.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | |
Assertion | fvrcllb1d | ⊢ ( 𝜑 → 𝑅 ⊆ ( r* ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrcllb1d.r | ⊢ ( 𝜑 → 𝑅 ∈ V ) | |
2 | dfrcl4 | ⊢ r* = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ { 0 , 1 } ( 𝑟 ↑𝑟 𝑛 ) ) | |
3 | prex | ⊢ { 0 , 1 } ∈ V | |
4 | 3 | a1i | ⊢ ( 𝜑 → { 0 , 1 } ∈ V ) |
5 | 1ex | ⊢ 1 ∈ V | |
6 | 5 | prid2 | ⊢ 1 ∈ { 0 , 1 } |
7 | 6 | a1i | ⊢ ( 𝜑 → 1 ∈ { 0 , 1 } ) |
8 | 2 1 4 7 | fvmptiunrelexplb1d | ⊢ ( 𝜑 → 𝑅 ⊆ ( r* ‘ 𝑅 ) ) |