Metamath Proof Explorer


Theorem fvrtrcllb0d

Description: A restriction of the identity relation is a subset of the reflexive-transitive closure of a set. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvrtrcllb0d.r
|- ( ph -> R e. _V )
Assertion fvrtrcllb0d
|- ( ph -> ( _I |` ( dom R u. ran R ) ) C_ ( t* ` R ) )

Proof

Step Hyp Ref Expression
1 fvrtrcllb0d.r
 |-  ( ph -> R e. _V )
2 dfrtrcl3
 |-  t* = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) )
3 nn0ex
 |-  NN0 e. _V
4 3 a1i
 |-  ( ph -> NN0 e. _V )
5 0nn0
 |-  0 e. NN0
6 5 a1i
 |-  ( ph -> 0 e. NN0 )
7 2 1 4 6 fvmptiunrelexplb0d
 |-  ( ph -> ( _I |` ( dom R u. ran R ) ) C_ ( t* ` R ) )