Description: A set is a subset of its image under the transitive closure. (Contributed by RP, 22-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fvtrcllb1d.r | |- ( ph -> R e. _V ) |
|
| Assertion | fvtrcllb1d | |- ( ph -> R C_ ( t+ ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvtrcllb1d.r | |- ( ph -> R e. _V ) |
|
| 2 | dftrcl3 | |- t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) ) |
|
| 3 | nnex | |- NN e. _V |
|
| 4 | 3 | a1i | |- ( ph -> NN e. _V ) |
| 5 | 1nn | |- 1 e. NN |
|
| 6 | 5 | a1i | |- ( ph -> 1 e. NN ) |
| 7 | 2 1 4 6 | fvmptiunrelexplb1d | |- ( ph -> R C_ ( t+ ` R ) ) |