Metamath Proof Explorer


Theorem fvtrcllb1d

Description: A set is a subset of its image under the transitive closure. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvtrcllb1d.r
|- ( ph -> R e. _V )
Assertion fvtrcllb1d
|- ( ph -> R C_ ( t+ ` R ) )

Proof

Step Hyp Ref Expression
1 fvtrcllb1d.r
 |-  ( ph -> R e. _V )
2 dftrcl3
 |-  t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) )
3 nnex
 |-  NN e. _V
4 3 a1i
 |-  ( ph -> NN e. _V )
5 1nn
 |-  1 e. NN
6 5 a1i
 |-  ( ph -> 1 e. NN )
7 2 1 4 6 fvmptiunrelexplb1d
 |-  ( ph -> R C_ ( t+ ` R ) )