Description: A set is a subset of its image under the transitive closure. (Contributed by RP, 22-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvtrcllb1d.r | |- ( ph -> R e. _V ) |
|
Assertion | fvtrcllb1d | |- ( ph -> R C_ ( t+ ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvtrcllb1d.r | |- ( ph -> R e. _V ) |
|
2 | dftrcl3 | |- t+ = ( r e. _V |-> U_ n e. NN ( r ^r n ) ) |
|
3 | nnex | |- NN e. _V |
|
4 | 3 | a1i | |- ( ph -> NN e. _V ) |
5 | 1nn | |- 1 e. NN |
|
6 | 5 | a1i | |- ( ph -> 1 e. NN ) |
7 | 2 1 4 6 | fvmptiunrelexplb1d | |- ( ph -> R C_ ( t+ ` R ) ) |