Description: The image of an abelian group G under a group homomorphism F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmabl.x | |- X = ( Base ` G ) | |
| ghmabl.y | |- Y = ( Base ` H ) | ||
| ghmabl.p | |- .+ = ( +g ` G ) | ||
| ghmabl.q | |- .+^ = ( +g ` H ) | ||
| ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) | ||
| ghmabl.1 | |- ( ph -> F : X -onto-> Y ) | ||
| ghmabl.3 | |- ( ph -> G e. Abel ) | ||
| Assertion | ghmabl | |- ( ph -> H e. Abel ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ghmabl.x | |- X = ( Base ` G ) | |
| 2 | ghmabl.y | |- Y = ( Base ` H ) | |
| 3 | ghmabl.p | |- .+ = ( +g ` G ) | |
| 4 | ghmabl.q | |- .+^ = ( +g ` H ) | |
| 5 | ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) | |
| 6 | ghmabl.1 | |- ( ph -> F : X -onto-> Y ) | |
| 7 | ghmabl.3 | |- ( ph -> G e. Abel ) | |
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) | |
| 9 | 7 8 | syl | |- ( ph -> G e. Grp ) | 
| 10 | 5 1 2 3 4 6 9 | ghmgrp | |- ( ph -> H e. Grp ) | 
| 11 | ablcmn | |- ( G e. Abel -> G e. CMnd ) | |
| 12 | 7 11 | syl | |- ( ph -> G e. CMnd ) | 
| 13 | 1 2 3 4 5 6 12 | ghmcmn | |- ( ph -> H e. CMnd ) | 
| 14 | isabl | |- ( H e. Abel <-> ( H e. Grp /\ H e. CMnd ) ) | |
| 15 | 10 13 14 | sylanbrc | |- ( ph -> H e. Abel ) |