Metamath Proof Explorer


Theorem ghmabl

Description: The image of an abelian group G under a group homomorphism F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x âŠĒ 𝑋 = ( Base ‘ 𝐚 )
ghmabl.y âŠĒ 𝑌 = ( Base ‘ ðŧ )
ghmabl.p âŠĒ + = ( +g ‘ 𝐚 )
ghmabl.q âŠĒ âĻĢ = ( +g ‘ ðŧ )
ghmabl.f âŠĒ ( ( 𝜑 ∧ ð‘Ĩ ∈ 𝑋 ∧ ð‘Ķ ∈ 𝑋 ) → ( ðđ ‘ ( ð‘Ĩ + ð‘Ķ ) ) = ( ( ðđ ‘ ð‘Ĩ ) âĻĢ ( ðđ ‘ ð‘Ķ ) ) )
ghmabl.1 âŠĒ ( 𝜑 → ðđ : 𝑋 –onto→ 𝑌 )
ghmabl.3 âŠĒ ( 𝜑 → 𝐚 ∈ Abel )
Assertion ghmabl ( 𝜑 → ðŧ ∈ Abel )

Proof

Step Hyp Ref Expression
1 ghmabl.x âŠĒ 𝑋 = ( Base ‘ 𝐚 )
2 ghmabl.y âŠĒ 𝑌 = ( Base ‘ ðŧ )
3 ghmabl.p âŠĒ + = ( +g ‘ 𝐚 )
4 ghmabl.q âŠĒ âĻĢ = ( +g ‘ ðŧ )
5 ghmabl.f âŠĒ ( ( 𝜑 ∧ ð‘Ĩ ∈ 𝑋 ∧ ð‘Ķ ∈ 𝑋 ) → ( ðđ ‘ ( ð‘Ĩ + ð‘Ķ ) ) = ( ( ðđ ‘ ð‘Ĩ ) âĻĢ ( ðđ ‘ ð‘Ķ ) ) )
6 ghmabl.1 âŠĒ ( 𝜑 → ðđ : 𝑋 –onto→ 𝑌 )
7 ghmabl.3 âŠĒ ( 𝜑 → 𝐚 ∈ Abel )
8 ablgrp âŠĒ ( 𝐚 ∈ Abel → 𝐚 ∈ Grp )
9 7 8 syl âŠĒ ( 𝜑 → 𝐚 ∈ Grp )
10 5 1 2 3 4 6 9 ghmgrp âŠĒ ( 𝜑 → ðŧ ∈ Grp )
11 ablcmn âŠĒ ( 𝐚 ∈ Abel → 𝐚 ∈ CMnd )
12 7 11 syl âŠĒ ( 𝜑 → 𝐚 ∈ CMnd )
13 1 2 3 4 5 6 12 ghmcmn âŠĒ ( 𝜑 → ðŧ ∈ CMnd )
14 isabl âŠĒ ( ðŧ ∈ Abel ↔ ( ðŧ ∈ Grp ∧ ðŧ ∈ CMnd ) )
15 10 13 14 sylanbrc âŠĒ ( 𝜑 → ðŧ ∈ Abel )