Metamath Proof Explorer


Theorem ghmabl

Description: The image of an abelian group G under a group homomorphism F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x 𝑋 = ( Base ‘ 𝐺 )
ghmabl.y 𝑌 = ( Base ‘ 𝐻 )
ghmabl.p + = ( +g𝐺 )
ghmabl.q = ( +g𝐻 )
ghmabl.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
ghmabl.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
ghmabl.3 ( 𝜑𝐺 ∈ Abel )
Assertion ghmabl ( 𝜑𝐻 ∈ Abel )

Proof

Step Hyp Ref Expression
1 ghmabl.x 𝑋 = ( Base ‘ 𝐺 )
2 ghmabl.y 𝑌 = ( Base ‘ 𝐻 )
3 ghmabl.p + = ( +g𝐺 )
4 ghmabl.q = ( +g𝐻 )
5 ghmabl.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
6 ghmabl.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
7 ghmabl.3 ( 𝜑𝐺 ∈ Abel )
8 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
9 7 8 syl ( 𝜑𝐺 ∈ Grp )
10 5 1 2 3 4 6 9 ghmgrp ( 𝜑𝐻 ∈ Grp )
11 ablcmn ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd )
12 7 11 syl ( 𝜑𝐺 ∈ CMnd )
13 1 2 3 4 5 6 12 ghmcmn ( 𝜑𝐻 ∈ CMnd )
14 isabl ( 𝐻 ∈ Abel ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd ) )
15 10 13 14 sylanbrc ( 𝜑𝐻 ∈ Abel )