Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Definition and basic properties ghmabl  
				
		 
		
			
		 
		Description:   The image of an abelian group G  under a group homomorphism F  is
       an abelian group.  (Contributed by Mario Carneiro , 12-May-2014) 
       (Revised by Thierry Arnoux , 26-Jan-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ghmabl.x ⊢  𝑋   =  ( Base ‘ 𝐺  )  
					
						ghmabl.y ⊢  𝑌   =  ( Base ‘ 𝐻  )  
					
						ghmabl.p ⊢   +    =  ( +g  ‘ 𝐺  )  
					
						ghmabl.q ⊢   ⨣    =  ( +g  ‘ 𝐻  )  
					
						ghmabl.f ⊢  ( ( 𝜑   ∧  𝑥   ∈  𝑋   ∧  𝑦   ∈  𝑋  )  →  ( 𝐹  ‘ ( 𝑥   +   𝑦  ) )  =  ( ( 𝐹  ‘ 𝑥  )  ⨣   ( 𝐹  ‘ 𝑦  ) ) )  
					
						ghmabl.1 ⊢  ( 𝜑   →  𝐹  : 𝑋  –onto → 𝑌  )  
					
						ghmabl.3 ⊢  ( 𝜑   →  𝐺   ∈  Abel )  
				
					Assertion 
					ghmabl ⊢   ( 𝜑   →  𝐻   ∈  Abel )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ghmabl.x ⊢  𝑋   =  ( Base ‘ 𝐺  )  
						
							2 
								
							 
							ghmabl.y ⊢  𝑌   =  ( Base ‘ 𝐻  )  
						
							3 
								
							 
							ghmabl.p ⊢   +    =  ( +g  ‘ 𝐺  )  
						
							4 
								
							 
							ghmabl.q ⊢   ⨣    =  ( +g  ‘ 𝐻  )  
						
							5 
								
							 
							ghmabl.f ⊢  ( ( 𝜑   ∧  𝑥   ∈  𝑋   ∧  𝑦   ∈  𝑋  )  →  ( 𝐹  ‘ ( 𝑥   +   𝑦  ) )  =  ( ( 𝐹  ‘ 𝑥  )  ⨣   ( 𝐹  ‘ 𝑦  ) ) )  
						
							6 
								
							 
							ghmabl.1 ⊢  ( 𝜑   →  𝐹  : 𝑋  –onto → 𝑌  )  
						
							7 
								
							 
							ghmabl.3 ⊢  ( 𝜑   →  𝐺   ∈  Abel )  
						
							8 
								
							 
							ablgrp ⊢  ( 𝐺   ∈  Abel  →  𝐺   ∈  Grp )  
						
							9 
								7  8 
							 
							syl ⊢  ( 𝜑   →  𝐺   ∈  Grp )  
						
							10 
								5  1  2  3  4  6  9 
							 
							ghmgrp ⊢  ( 𝜑   →  𝐻   ∈  Grp )  
						
							11 
								
							 
							ablcmn ⊢  ( 𝐺   ∈  Abel  →  𝐺   ∈  CMnd )  
						
							12 
								7  11 
							 
							syl ⊢  ( 𝜑   →  𝐺   ∈  CMnd )  
						
							13 
								1  2  3  4  5  6  12 
							 
							ghmcmn ⊢  ( 𝜑   →  𝐻   ∈  CMnd )  
						
							14 
								
							 
							isabl ⊢  ( 𝐻   ∈  Abel  ↔  ( 𝐻   ∈  Grp  ∧  𝐻   ∈  CMnd ) )  
						
							15 
								10  13  14 
							 
							sylanbrc ⊢  ( 𝜑   →  𝐻   ∈  Abel )