| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgic |
|- ( G ~=g H <-> ( G GrpIso H ) =/= (/) ) |
| 2 |
|
n0 |
|- ( ( G GrpIso H ) =/= (/) <-> E. f f e. ( G GrpIso H ) ) |
| 3 |
|
gimghm |
|- ( f e. ( G GrpIso H ) -> f e. ( G GrpHom H ) ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 6 |
4 5
|
gimf1o |
|- ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -1-1-onto-> ( Base ` H ) ) |
| 7 |
|
f1ofo |
|- ( f : ( Base ` G ) -1-1-onto-> ( Base ` H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) |
| 8 |
6 7
|
syl |
|- ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) |
| 9 |
4 5
|
ghmcyg |
|- ( ( f e. ( G GrpHom H ) /\ f : ( Base ` G ) -onto-> ( Base ` H ) ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 10 |
3 8 9
|
syl2anc |
|- ( f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 11 |
10
|
exlimiv |
|- ( E. f f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 12 |
2 11
|
sylbi |
|- ( ( G GrpIso H ) =/= (/) -> ( G e. CycGrp -> H e. CycGrp ) ) |
| 13 |
1 12
|
sylbi |
|- ( G ~=g H -> ( G e. CycGrp -> H e. CycGrp ) ) |