Metamath Proof Explorer


Theorem grimedgi

Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 30-Dec-2025)

Ref Expression
Hypotheses grimedg.v
|- V = ( Vtx ` G )
grimedg.i
|- I = ( Edg ` G )
grimedg.e
|- E = ( Edg ` H )
Assertion grimedgi
|- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I -> ( F " K ) e. E ) )

Proof

Step Hyp Ref Expression
1 grimedg.v
 |-  V = ( Vtx ` G )
2 grimedg.i
 |-  I = ( Edg ` G )
3 grimedg.e
 |-  E = ( Edg ` H )
4 1 2 3 grimedg
 |-  ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) )
5 simpl
 |-  ( ( ( F " K ) e. E /\ K C_ V ) -> ( F " K ) e. E )
6 4 5 biimtrdi
 |-  ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I -> ( F " K ) e. E ) )