Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 30-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimedg.v | |- V = ( Vtx ` G ) |
|
| grimedg.i | |- I = ( Edg ` G ) |
||
| grimedg.e | |- E = ( Edg ` H ) |
||
| Assertion | grimedgi | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I -> ( F " K ) e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimedg.v | |- V = ( Vtx ` G ) |
|
| 2 | grimedg.i | |- I = ( Edg ` G ) |
|
| 3 | grimedg.e | |- E = ( Edg ` H ) |
|
| 4 | 1 2 3 | grimedg | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I <-> ( ( F " K ) e. E /\ K C_ V ) ) ) |
| 5 | simpl | |- ( ( ( F " K ) e. E /\ K C_ V ) -> ( F " K ) e. E ) |
|
| 6 | 4 5 | biimtrdi | |- ( ( G e. UHGraph /\ H e. UHGraph /\ F e. ( G GraphIso H ) ) -> ( K e. I -> ( F " K ) e. E ) ) |