Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 30-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grimedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | ||
| grimedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | ||
| Assertion | grimedgi | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾 ∈ 𝐼 → ( 𝐹 “ 𝐾 ) ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grimedg.i | ⊢ 𝐼 = ( Edg ‘ 𝐺 ) | |
| 3 | grimedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐻 ) | |
| 4 | 1 2 3 | grimedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾 ∈ 𝐼 ↔ ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) ) ) |
| 5 | simpl | ⊢ ( ( ( 𝐹 “ 𝐾 ) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉 ) → ( 𝐹 “ 𝐾 ) ∈ 𝐸 ) | |
| 6 | 4 5 | biimtrdi | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾 ∈ 𝐼 → ( 𝐹 “ 𝐾 ) ∈ 𝐸 ) ) |