Metamath Proof Explorer


Theorem grimedgi

Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 30-Dec-2025)

Ref Expression
Hypotheses grimedg.v 𝑉 = ( Vtx ‘ 𝐺 )
grimedg.i 𝐼 = ( Edg ‘ 𝐺 )
grimedg.e 𝐸 = ( Edg ‘ 𝐻 )
Assertion grimedgi ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾𝐼 → ( 𝐹𝐾 ) ∈ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 grimedg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 grimedg.i 𝐼 = ( Edg ‘ 𝐺 )
3 grimedg.e 𝐸 = ( Edg ‘ 𝐻 )
4 1 2 3 grimedg ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾𝐼 ↔ ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) ) )
5 simpl ( ( ( 𝐹𝐾 ) ∈ 𝐸𝐾𝑉 ) → ( 𝐹𝐾 ) ∈ 𝐸 )
6 4 5 biimtrdi ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐾𝐼 → ( 𝐹𝐾 ) ∈ 𝐸 ) )