Metamath Proof Explorer


Theorem grimedgi

Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 30-Dec-2025)

Ref Expression
Hypotheses grimedg.v V = Vtx G
grimedg.i I = Edg G
grimedg.e E = Edg H
Assertion grimedgi G UHGraph H UHGraph F G GraphIso H K I F K E

Proof

Step Hyp Ref Expression
1 grimedg.v V = Vtx G
2 grimedg.i I = Edg G
3 grimedg.e E = Edg H
4 1 2 3 grimedg G UHGraph H UHGraph F G GraphIso H K I F K E K V
5 simpl F K E K V F K E
6 4 5 biimtrdi G UHGraph H UHGraph F G GraphIso H K I F K E