| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpss.g |
|- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
| 2 |
|
grpss.r |
|- R e. _V |
| 3 |
|
grpss.s |
|- G C_ R |
| 4 |
|
grpss.f |
|- Fun R |
| 5 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 6 |
|
opex |
|- <. ( Base ` ndx ) , B >. e. _V |
| 7 |
6
|
prid1 |
|- <. ( Base ` ndx ) , B >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
| 8 |
7 1
|
eleqtrri |
|- <. ( Base ` ndx ) , B >. e. G |
| 9 |
2 4 3 5 8
|
strss |
|- ( Base ` R ) = ( Base ` G ) |
| 10 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
| 11 |
|
opex |
|- <. ( +g ` ndx ) , .+ >. e. _V |
| 12 |
11
|
prid2 |
|- <. ( +g ` ndx ) , .+ >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
| 13 |
12 1
|
eleqtrri |
|- <. ( +g ` ndx ) , .+ >. e. G |
| 14 |
2 4 3 10 13
|
strss |
|- ( +g ` R ) = ( +g ` G ) |
| 15 |
9 14
|
grpprop |
|- ( R e. Grp <-> G e. Grp ) |
| 16 |
15
|
bicomi |
|- ( G e. Grp <-> R e. Grp ) |