Metamath Proof Explorer


Theorem gruiin

Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruiin
|- ( ( U e. Univ /\ E. x e. A B e. U ) -> |^|_ x e. A B e. U )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ x U e. Univ
2 nfii1
 |-  F/_ x |^|_ x e. A B
3 2 nfel1
 |-  F/ x |^|_ x e. A B e. U
4 iinss2
 |-  ( x e. A -> |^|_ x e. A B C_ B )
5 gruss
 |-  ( ( U e. Univ /\ B e. U /\ |^|_ x e. A B C_ B ) -> |^|_ x e. A B e. U )
6 4 5 syl3an3
 |-  ( ( U e. Univ /\ B e. U /\ x e. A ) -> |^|_ x e. A B e. U )
7 6 3exp
 |-  ( U e. Univ -> ( B e. U -> ( x e. A -> |^|_ x e. A B e. U ) ) )
8 7 com23
 |-  ( U e. Univ -> ( x e. A -> ( B e. U -> |^|_ x e. A B e. U ) ) )
9 1 3 8 rexlimd
 |-  ( U e. Univ -> ( E. x e. A B e. U -> |^|_ x e. A B e. U ) )
10 9 imp
 |-  ( ( U e. Univ /\ E. x e. A B e. U ) -> |^|_ x e. A B e. U )