Step |
Hyp |
Ref |
Expression |
1 |
|
gsumdifsndf.k |
|- F/_ k Y |
2 |
|
gsumdifsndf.n |
|- F/ k ph |
3 |
|
gsumdifsndf.b |
|- B = ( Base ` G ) |
4 |
|
gsumdifsndf.p |
|- .+ = ( +g ` G ) |
5 |
|
gsumdifsndf.g |
|- ( ph -> G e. CMnd ) |
6 |
|
gsumdifsndf.a |
|- ( ph -> A e. W ) |
7 |
|
gsumdifsndf.f |
|- ( ph -> ( k e. A |-> X ) finSupp ( 0g ` G ) ) |
8 |
|
gsumdifsndf.e |
|- ( ( ph /\ k e. A ) -> X e. B ) |
9 |
|
gsumdifsndf.m |
|- ( ph -> M e. A ) |
10 |
|
gsumdifsndf.y |
|- ( ph -> Y e. B ) |
11 |
|
gsumdifsndf.s |
|- ( ( ph /\ k = M ) -> X = Y ) |
12 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
13 |
9
|
snssd |
|- ( ph -> { M } C_ A ) |
14 |
|
difin2 |
|- ( { M } C_ A -> ( { M } \ { M } ) = ( ( A \ { M } ) i^i { M } ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( { M } \ { M } ) = ( ( A \ { M } ) i^i { M } ) ) |
16 |
|
difid |
|- ( { M } \ { M } ) = (/) |
17 |
15 16
|
eqtr3di |
|- ( ph -> ( ( A \ { M } ) i^i { M } ) = (/) ) |
18 |
|
difsnid |
|- ( M e. A -> ( ( A \ { M } ) u. { M } ) = A ) |
19 |
9 18
|
syl |
|- ( ph -> ( ( A \ { M } ) u. { M } ) = A ) |
20 |
19
|
eqcomd |
|- ( ph -> A = ( ( A \ { M } ) u. { M } ) ) |
21 |
2 3 12 4 5 6 8 7 17 20
|
gsumsplit2f |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) ) |
22 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
23 |
5 22
|
syl |
|- ( ph -> G e. Mnd ) |
24 |
3 23 9 10 11 2 1
|
gsumsnfd |
|- ( ph -> ( G gsum ( k e. { M } |-> X ) ) = Y ) |
25 |
24
|
oveq2d |
|- ( ph -> ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ Y ) ) |
26 |
21 25
|
eqtrd |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ Y ) ) |