| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumdifsndf.k |  |-  F/_ k Y | 
						
							| 2 |  | gsumdifsndf.n |  |-  F/ k ph | 
						
							| 3 |  | gsumdifsndf.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | gsumdifsndf.p |  |-  .+ = ( +g ` G ) | 
						
							| 5 |  | gsumdifsndf.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 6 |  | gsumdifsndf.a |  |-  ( ph -> A e. W ) | 
						
							| 7 |  | gsumdifsndf.f |  |-  ( ph -> ( k e. A |-> X ) finSupp ( 0g ` G ) ) | 
						
							| 8 |  | gsumdifsndf.e |  |-  ( ( ph /\ k e. A ) -> X e. B ) | 
						
							| 9 |  | gsumdifsndf.m |  |-  ( ph -> M e. A ) | 
						
							| 10 |  | gsumdifsndf.y |  |-  ( ph -> Y e. B ) | 
						
							| 11 |  | gsumdifsndf.s |  |-  ( ( ph /\ k = M ) -> X = Y ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 13 | 9 | snssd |  |-  ( ph -> { M } C_ A ) | 
						
							| 14 |  | difin2 |  |-  ( { M } C_ A -> ( { M } \ { M } ) = ( ( A \ { M } ) i^i { M } ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> ( { M } \ { M } ) = ( ( A \ { M } ) i^i { M } ) ) | 
						
							| 16 |  | difid |  |-  ( { M } \ { M } ) = (/) | 
						
							| 17 | 15 16 | eqtr3di |  |-  ( ph -> ( ( A \ { M } ) i^i { M } ) = (/) ) | 
						
							| 18 |  | difsnid |  |-  ( M e. A -> ( ( A \ { M } ) u. { M } ) = A ) | 
						
							| 19 | 9 18 | syl |  |-  ( ph -> ( ( A \ { M } ) u. { M } ) = A ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ph -> A = ( ( A \ { M } ) u. { M } ) ) | 
						
							| 21 | 2 3 12 4 5 6 8 7 17 20 | gsumsplit2f |  |-  ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) ) | 
						
							| 22 |  | cmnmnd |  |-  ( G e. CMnd -> G e. Mnd ) | 
						
							| 23 | 5 22 | syl |  |-  ( ph -> G e. Mnd ) | 
						
							| 24 | 3 23 9 10 11 2 1 | gsumsnfd |  |-  ( ph -> ( G gsum ( k e. { M } |-> X ) ) = Y ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ph -> ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ ( G gsum ( k e. { M } |-> X ) ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ Y ) ) | 
						
							| 26 | 21 25 | eqtrd |  |-  ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. ( A \ { M } ) |-> X ) ) .+ Y ) ) |