Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsplit2f.n |
|- F/ k ph |
2 |
|
gsumsplit2f.b |
|- B = ( Base ` G ) |
3 |
|
gsumsplit2f.z |
|- .0. = ( 0g ` G ) |
4 |
|
gsumsplit2f.p |
|- .+ = ( +g ` G ) |
5 |
|
gsumsplit2f.g |
|- ( ph -> G e. CMnd ) |
6 |
|
gsumsplit2f.a |
|- ( ph -> A e. V ) |
7 |
|
gsumsplit2f.f |
|- ( ( ph /\ k e. A ) -> X e. B ) |
8 |
|
gsumsplit2f.w |
|- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
9 |
|
gsumsplit2f.i |
|- ( ph -> ( C i^i D ) = (/) ) |
10 |
|
gsumsplit2f.u |
|- ( ph -> A = ( C u. D ) ) |
11 |
|
eqid |
|- ( k e. A |-> X ) = ( k e. A |-> X ) |
12 |
1 7 11
|
fmptdf |
|- ( ph -> ( k e. A |-> X ) : A --> B ) |
13 |
2 3 4 5 6 12 8 9 10
|
gsumsplit |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) ) |
14 |
|
ssun1 |
|- C C_ ( C u. D ) |
15 |
14 10
|
sseqtrrid |
|- ( ph -> C C_ A ) |
16 |
15
|
resmptd |
|- ( ph -> ( ( k e. A |-> X ) |` C ) = ( k e. C |-> X ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( G gsum ( ( k e. A |-> X ) |` C ) ) = ( G gsum ( k e. C |-> X ) ) ) |
18 |
|
ssun2 |
|- D C_ ( C u. D ) |
19 |
18 10
|
sseqtrrid |
|- ( ph -> D C_ A ) |
20 |
19
|
resmptd |
|- ( ph -> ( ( k e. A |-> X ) |` D ) = ( k e. D |-> X ) ) |
21 |
20
|
oveq2d |
|- ( ph -> ( G gsum ( ( k e. A |-> X ) |` D ) ) = ( G gsum ( k e. D |-> X ) ) ) |
22 |
17 21
|
oveq12d |
|- ( ph -> ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |
23 |
13 22
|
eqtrd |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |