| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumsplit2f.n |  |-  F/ k ph | 
						
							| 2 |  | gsumsplit2f.b |  |-  B = ( Base ` G ) | 
						
							| 3 |  | gsumsplit2f.z |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | gsumsplit2f.p |  |-  .+ = ( +g ` G ) | 
						
							| 5 |  | gsumsplit2f.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 6 |  | gsumsplit2f.a |  |-  ( ph -> A e. V ) | 
						
							| 7 |  | gsumsplit2f.f |  |-  ( ( ph /\ k e. A ) -> X e. B ) | 
						
							| 8 |  | gsumsplit2f.w |  |-  ( ph -> ( k e. A |-> X ) finSupp .0. ) | 
						
							| 9 |  | gsumsplit2f.i |  |-  ( ph -> ( C i^i D ) = (/) ) | 
						
							| 10 |  | gsumsplit2f.u |  |-  ( ph -> A = ( C u. D ) ) | 
						
							| 11 |  | eqid |  |-  ( k e. A |-> X ) = ( k e. A |-> X ) | 
						
							| 12 | 1 7 11 | fmptdf |  |-  ( ph -> ( k e. A |-> X ) : A --> B ) | 
						
							| 13 | 2 3 4 5 6 12 8 9 10 | gsumsplit |  |-  ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) ) | 
						
							| 14 |  | ssun1 |  |-  C C_ ( C u. D ) | 
						
							| 15 | 14 10 | sseqtrrid |  |-  ( ph -> C C_ A ) | 
						
							| 16 | 15 | resmptd |  |-  ( ph -> ( ( k e. A |-> X ) |` C ) = ( k e. C |-> X ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ph -> ( G gsum ( ( k e. A |-> X ) |` C ) ) = ( G gsum ( k e. C |-> X ) ) ) | 
						
							| 18 |  | ssun2 |  |-  D C_ ( C u. D ) | 
						
							| 19 | 18 10 | sseqtrrid |  |-  ( ph -> D C_ A ) | 
						
							| 20 | 19 | resmptd |  |-  ( ph -> ( ( k e. A |-> X ) |` D ) = ( k e. D |-> X ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ph -> ( G gsum ( ( k e. A |-> X ) |` D ) ) = ( G gsum ( k e. D |-> X ) ) ) | 
						
							| 22 | 17 21 | oveq12d |  |-  ( ph -> ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) | 
						
							| 23 | 13 22 | eqtrd |  |-  ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |