Metamath Proof Explorer


Theorem gsumsplit2f

Description: Split a group sum into two parts. (Contributed by AV, 4-Sep-2019)

Ref Expression
Hypotheses gsumsplit2f.n k φ
gsumsplit2f.b B = Base G
gsumsplit2f.z 0 ˙ = 0 G
gsumsplit2f.p + ˙ = + G
gsumsplit2f.g φ G CMnd
gsumsplit2f.a φ A V
gsumsplit2f.f φ k A X B
gsumsplit2f.w φ finSupp 0 ˙ k A X
gsumsplit2f.i φ C D =
gsumsplit2f.u φ A = C D
Assertion gsumsplit2f φ G k A X = G k C X + ˙ G k D X

Proof

Step Hyp Ref Expression
1 gsumsplit2f.n k φ
2 gsumsplit2f.b B = Base G
3 gsumsplit2f.z 0 ˙ = 0 G
4 gsumsplit2f.p + ˙ = + G
5 gsumsplit2f.g φ G CMnd
6 gsumsplit2f.a φ A V
7 gsumsplit2f.f φ k A X B
8 gsumsplit2f.w φ finSupp 0 ˙ k A X
9 gsumsplit2f.i φ C D =
10 gsumsplit2f.u φ A = C D
11 eqid k A X = k A X
12 1 7 11 fmptdf φ k A X : A B
13 2 3 4 5 6 12 8 9 10 gsumsplit φ G k A X = G k A X C + ˙ G k A X D
14 ssun1 C C D
15 14 10 sseqtrrid φ C A
16 15 resmptd φ k A X C = k C X
17 16 oveq2d φ G k A X C = G k C X
18 ssun2 D C D
19 18 10 sseqtrrid φ D A
20 19 resmptd φ k A X D = k D X
21 20 oveq2d φ G k A X D = G k D X
22 17 21 oveq12d φ G k A X C + ˙ G k A X D = G k C X + ˙ G k D X
23 13 22 eqtrd φ G k A X = G k C X + ˙ G k D X