| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumsplit2f.n | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | gsumsplit2f.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | gsumsplit2f.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | gsumsplit2f.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 5 |  | gsumsplit2f.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 6 |  | gsumsplit2f.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | gsumsplit2f.f | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | gsumsplit2f.w | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝑋 )  finSupp   0  ) | 
						
							| 9 |  | gsumsplit2f.i | ⊢ ( 𝜑  →  ( 𝐶  ∩  𝐷 )  =  ∅ ) | 
						
							| 10 |  | gsumsplit2f.u | ⊢ ( 𝜑  →  𝐴  =  ( 𝐶  ∪  𝐷 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  𝑋 )  =  ( 𝑘  ∈  𝐴  ↦  𝑋 ) | 
						
							| 12 | 1 7 11 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝑋 ) : 𝐴 ⟶ 𝐵 ) | 
						
							| 13 | 2 3 4 5 6 12 8 9 10 | gsumsplit | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐶 ) )  +  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐷 ) ) ) ) | 
						
							| 14 |  | ssun1 | ⊢ 𝐶  ⊆  ( 𝐶  ∪  𝐷 ) | 
						
							| 15 | 14 10 | sseqtrrid | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 16 | 15 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐶 )  =  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐶 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) | 
						
							| 18 |  | ssun2 | ⊢ 𝐷  ⊆  ( 𝐶  ∪  𝐷 ) | 
						
							| 19 | 18 10 | sseqtrrid | ⊢ ( 𝜑  →  𝐷  ⊆  𝐴 ) | 
						
							| 20 | 19 | resmptd | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐷 )  =  ( 𝑘  ∈  𝐷  ↦  𝑋 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐷 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐷  ↦  𝑋 ) ) ) | 
						
							| 22 | 17 21 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐶 ) )  +  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  𝑋 )  ↾  𝐷 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  𝐷  ↦  𝑋 ) ) ) ) | 
						
							| 23 | 13 22 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  𝐷  ↦  𝑋 ) ) ) ) |