Metamath Proof Explorer


Theorem gsumsplit2f

Description: Split a group sum into two parts. (Contributed by AV, 4-Sep-2019)

Ref Expression
Hypotheses gsumsplit2f.n 𝑘 𝜑
gsumsplit2f.b 𝐵 = ( Base ‘ 𝐺 )
gsumsplit2f.z 0 = ( 0g𝐺 )
gsumsplit2f.p + = ( +g𝐺 )
gsumsplit2f.g ( 𝜑𝐺 ∈ CMnd )
gsumsplit2f.a ( 𝜑𝐴𝑉 )
gsumsplit2f.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
gsumsplit2f.w ( 𝜑 → ( 𝑘𝐴𝑋 ) finSupp 0 )
gsumsplit2f.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
gsumsplit2f.u ( 𝜑𝐴 = ( 𝐶𝐷 ) )
Assertion gsumsplit2f ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘𝐶𝑋 ) ) + ( 𝐺 Σg ( 𝑘𝐷𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumsplit2f.n 𝑘 𝜑
2 gsumsplit2f.b 𝐵 = ( Base ‘ 𝐺 )
3 gsumsplit2f.z 0 = ( 0g𝐺 )
4 gsumsplit2f.p + = ( +g𝐺 )
5 gsumsplit2f.g ( 𝜑𝐺 ∈ CMnd )
6 gsumsplit2f.a ( 𝜑𝐴𝑉 )
7 gsumsplit2f.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
8 gsumsplit2f.w ( 𝜑 → ( 𝑘𝐴𝑋 ) finSupp 0 )
9 gsumsplit2f.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
10 gsumsplit2f.u ( 𝜑𝐴 = ( 𝐶𝐷 ) )
11 eqid ( 𝑘𝐴𝑋 ) = ( 𝑘𝐴𝑋 )
12 1 7 11 fmptdf ( 𝜑 → ( 𝑘𝐴𝑋 ) : 𝐴𝐵 )
13 2 3 4 5 6 12 8 9 10 gsumsplit ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) = ( ( 𝐺 Σg ( ( 𝑘𝐴𝑋 ) ↾ 𝐶 ) ) + ( 𝐺 Σg ( ( 𝑘𝐴𝑋 ) ↾ 𝐷 ) ) ) )
14 ssun1 𝐶 ⊆ ( 𝐶𝐷 )
15 14 10 sseqtrrid ( 𝜑𝐶𝐴 )
16 15 resmptd ( 𝜑 → ( ( 𝑘𝐴𝑋 ) ↾ 𝐶 ) = ( 𝑘𝐶𝑋 ) )
17 16 oveq2d ( 𝜑 → ( 𝐺 Σg ( ( 𝑘𝐴𝑋 ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘𝐶𝑋 ) ) )
18 ssun2 𝐷 ⊆ ( 𝐶𝐷 )
19 18 10 sseqtrrid ( 𝜑𝐷𝐴 )
20 19 resmptd ( 𝜑 → ( ( 𝑘𝐴𝑋 ) ↾ 𝐷 ) = ( 𝑘𝐷𝑋 ) )
21 20 oveq2d ( 𝜑 → ( 𝐺 Σg ( ( 𝑘𝐴𝑋 ) ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘𝐷𝑋 ) ) )
22 17 21 oveq12d ( 𝜑 → ( ( 𝐺 Σg ( ( 𝑘𝐴𝑋 ) ↾ 𝐶 ) ) + ( 𝐺 Σg ( ( 𝑘𝐴𝑋 ) ↾ 𝐷 ) ) ) = ( ( 𝐺 Σg ( 𝑘𝐶𝑋 ) ) + ( 𝐺 Σg ( 𝑘𝐷𝑋 ) ) ) )
23 13 22 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘𝐶𝑋 ) ) + ( 𝐺 Σg ( 𝑘𝐷𝑋 ) ) ) )