| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumdifsndf.k | ⊢ Ⅎ 𝑘 𝑌 | 
						
							| 2 |  | gsumdifsndf.n | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 3 |  | gsumdifsndf.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | gsumdifsndf.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 5 |  | gsumdifsndf.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 6 |  | gsumdifsndf.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑊 ) | 
						
							| 7 |  | gsumdifsndf.f | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝑋 )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 8 |  | gsumdifsndf.e | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | gsumdifsndf.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐴 ) | 
						
							| 10 |  | gsumdifsndf.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 11 |  | gsumdifsndf.s | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑀 )  →  𝑋  =  𝑌 ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 13 | 9 | snssd | ⊢ ( 𝜑  →  { 𝑀 }  ⊆  𝐴 ) | 
						
							| 14 |  | difin2 | ⊢ ( { 𝑀 }  ⊆  𝐴  →  ( { 𝑀 }  ∖  { 𝑀 } )  =  ( ( 𝐴  ∖  { 𝑀 } )  ∩  { 𝑀 } ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ( { 𝑀 }  ∖  { 𝑀 } )  =  ( ( 𝐴  ∖  { 𝑀 } )  ∩  { 𝑀 } ) ) | 
						
							| 16 |  | difid | ⊢ ( { 𝑀 }  ∖  { 𝑀 } )  =  ∅ | 
						
							| 17 | 15 16 | eqtr3di | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  { 𝑀 } )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 18 |  | difsnid | ⊢ ( 𝑀  ∈  𝐴  →  ( ( 𝐴  ∖  { 𝑀 } )  ∪  { 𝑀 } )  =  𝐴 ) | 
						
							| 19 | 9 18 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  ∖  { 𝑀 } )  ∪  { 𝑀 } )  =  𝐴 ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  ∖  { 𝑀 } )  ∪  { 𝑀 } ) ) | 
						
							| 21 | 2 3 12 4 5 6 8 7 17 20 | gsumsplit2f | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∖  { 𝑀 } )  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) ) ) | 
						
							| 22 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 23 | 5 22 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 24 | 3 23 9 10 11 2 1 | gsumsnfd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) )  =  𝑌 ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∖  { 𝑀 } )  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∖  { 𝑀 } )  ↦  𝑋 ) )  +  𝑌 ) ) | 
						
							| 26 | 21 25 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∖  { 𝑀 } )  ↦  𝑋 ) )  +  𝑌 ) ) |