| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumws3.0 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumws3.1 |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | s1s2 |  |-  <" S T U "> = ( <" S "> ++ <" T U "> ) | 
						
							| 4 | 3 | a1i |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> <" S T U "> = ( <" S "> ++ <" T U "> ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> ( G gsum <" S T U "> ) = ( G gsum ( <" S "> ++ <" T U "> ) ) ) | 
						
							| 6 |  | simpl |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> G e. Mnd ) | 
						
							| 7 |  | simprl |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> S e. B ) | 
						
							| 8 | 7 | s1cld |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> <" S "> e. Word B ) | 
						
							| 9 |  | simprrl |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> T e. B ) | 
						
							| 10 |  | simprrr |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> U e. B ) | 
						
							| 11 | 9 10 | s2cld |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> <" T U "> e. Word B ) | 
						
							| 12 | 1 2 | gsumccat |  |-  ( ( G e. Mnd /\ <" S "> e. Word B /\ <" T U "> e. Word B ) -> ( G gsum ( <" S "> ++ <" T U "> ) ) = ( ( G gsum <" S "> ) .+ ( G gsum <" T U "> ) ) ) | 
						
							| 13 | 6 8 11 12 | syl3anc |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> ( G gsum ( <" S "> ++ <" T U "> ) ) = ( ( G gsum <" S "> ) .+ ( G gsum <" T U "> ) ) ) | 
						
							| 14 | 1 | gsumws1 |  |-  ( S e. B -> ( G gsum <" S "> ) = S ) | 
						
							| 15 | 14 | ad2antrl |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> ( G gsum <" S "> ) = S ) | 
						
							| 16 | 1 2 | gsumws2 |  |-  ( ( G e. Mnd /\ T e. B /\ U e. B ) -> ( G gsum <" T U "> ) = ( T .+ U ) ) | 
						
							| 17 | 16 | 3expb |  |-  ( ( G e. Mnd /\ ( T e. B /\ U e. B ) ) -> ( G gsum <" T U "> ) = ( T .+ U ) ) | 
						
							| 18 | 17 | adantrl |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> ( G gsum <" T U "> ) = ( T .+ U ) ) | 
						
							| 19 | 15 18 | oveq12d |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> ( ( G gsum <" S "> ) .+ ( G gsum <" T U "> ) ) = ( S .+ ( T .+ U ) ) ) | 
						
							| 20 | 5 13 19 | 3eqtrd |  |-  ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ U e. B ) ) ) -> ( G gsum <" S T U "> ) = ( S .+ ( T .+ U ) ) ) |