Step |
Hyp |
Ref |
Expression |
1 |
|
gsumws4.0 |
|- B = ( Base ` G ) |
2 |
|
gsumws4.1 |
|- .+ = ( +g ` G ) |
3 |
|
s1s3 |
|- <" S T U V "> = ( <" S "> ++ <" T U V "> ) |
4 |
3
|
a1i |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> <" S T U V "> = ( <" S "> ++ <" T U V "> ) ) |
5 |
4
|
oveq2d |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> ( G gsum <" S T U V "> ) = ( G gsum ( <" S "> ++ <" T U V "> ) ) ) |
6 |
|
simpl |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> G e. Mnd ) |
7 |
|
simprl |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> S e. B ) |
8 |
7
|
s1cld |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> <" S "> e. Word B ) |
9 |
|
simprrl |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> T e. B ) |
10 |
|
simprrl |
|- ( ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) -> U e. B ) |
11 |
10
|
adantl |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> U e. B ) |
12 |
|
simprrr |
|- ( ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) -> V e. B ) |
13 |
12
|
adantl |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> V e. B ) |
14 |
9 11 13
|
s3cld |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> <" T U V "> e. Word B ) |
15 |
1 2
|
gsumccat |
|- ( ( G e. Mnd /\ <" S "> e. Word B /\ <" T U V "> e. Word B ) -> ( G gsum ( <" S "> ++ <" T U V "> ) ) = ( ( G gsum <" S "> ) .+ ( G gsum <" T U V "> ) ) ) |
16 |
6 8 14 15
|
syl3anc |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> ( G gsum ( <" S "> ++ <" T U V "> ) ) = ( ( G gsum <" S "> ) .+ ( G gsum <" T U V "> ) ) ) |
17 |
1
|
gsumws1 |
|- ( S e. B -> ( G gsum <" S "> ) = S ) |
18 |
17
|
ad2antrl |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> ( G gsum <" S "> ) = S ) |
19 |
1 2
|
gsumws3 |
|- ( ( G e. Mnd /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) -> ( G gsum <" T U V "> ) = ( T .+ ( U .+ V ) ) ) |
20 |
19
|
adantrl |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> ( G gsum <" T U V "> ) = ( T .+ ( U .+ V ) ) ) |
21 |
18 20
|
oveq12d |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> ( ( G gsum <" S "> ) .+ ( G gsum <" T U V "> ) ) = ( S .+ ( T .+ ( U .+ V ) ) ) ) |
22 |
5 16 21
|
3eqtrd |
|- ( ( G e. Mnd /\ ( S e. B /\ ( T e. B /\ ( U e. B /\ V e. B ) ) ) ) -> ( G gsum <" S T U V "> ) = ( S .+ ( T .+ ( U .+ V ) ) ) ) |