Metamath Proof Explorer


Theorem gsumws4

Description: Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020)

Ref Expression
Hypotheses gsumws4.0 B=BaseG
gsumws4.1 +˙=+G
Assertion gsumws4 GMndSBTBUBVBG⟨“STUV”⟩=S+˙T+˙U+˙V

Proof

Step Hyp Ref Expression
1 gsumws4.0 B=BaseG
2 gsumws4.1 +˙=+G
3 s1s3 ⟨“STUV”⟩=⟨“S”⟩++⟨“TUV”⟩
4 3 a1i GMndSBTBUBVB⟨“STUV”⟩=⟨“S”⟩++⟨“TUV”⟩
5 4 oveq2d GMndSBTBUBVBG⟨“STUV”⟩=G⟨“S”⟩++⟨“TUV”⟩
6 simpl GMndSBTBUBVBGMnd
7 simprl GMndSBTBUBVBSB
8 7 s1cld GMndSBTBUBVB⟨“S”⟩WordB
9 simprrl GMndSBTBUBVBTB
10 simprrl SBTBUBVBUB
11 10 adantl GMndSBTBUBVBUB
12 simprrr SBTBUBVBVB
13 12 adantl GMndSBTBUBVBVB
14 9 11 13 s3cld GMndSBTBUBVB⟨“TUV”⟩WordB
15 1 2 gsumccat GMnd⟨“S”⟩WordB⟨“TUV”⟩WordBG⟨“S”⟩++⟨“TUV”⟩=G⟨“S”⟩+˙G⟨“TUV”⟩
16 6 8 14 15 syl3anc GMndSBTBUBVBG⟨“S”⟩++⟨“TUV”⟩=G⟨“S”⟩+˙G⟨“TUV”⟩
17 1 gsumws1 SBG⟨“S”⟩=S
18 17 ad2antrl GMndSBTBUBVBG⟨“S”⟩=S
19 1 2 gsumws3 GMndTBUBVBG⟨“TUV”⟩=T+˙U+˙V
20 19 adantrl GMndSBTBUBVBG⟨“TUV”⟩=T+˙U+˙V
21 18 20 oveq12d GMndSBTBUBVBG⟨“S”⟩+˙G⟨“TUV”⟩=S+˙T+˙U+˙V
22 5 16 21 3eqtrd GMndSBTBUBVBG⟨“STUV”⟩=S+˙T+˙U+˙V