Metamath Proof Explorer


Theorem amgm2d

Description: Arithmetic-geometric mean inequality for n = 2 , derived from amgmlem . (Contributed by Stanislas Polu, 8-Sep-2020)

Ref Expression
Hypotheses amgm2d.0 φ A +
amgm2d.1 φ B +
Assertion amgm2d φ A B 1 2 A + B 2

Proof

Step Hyp Ref Expression
1 amgm2d.0 φ A +
2 amgm2d.1 φ B +
3 eqid mulGrp fld = mulGrp fld
4 fzofi 0 ..^ 2 Fin
5 4 a1i φ 0 ..^ 2 Fin
6 2nn 2
7 lbfzo0 0 0 ..^ 2 2
8 6 7 mpbir 0 0 ..^ 2
9 8 ne0ii 0 ..^ 2
10 9 a1i φ 0 ..^ 2
11 1 2 s2cld φ ⟨“ AB ”⟩ Word +
12 wrdf ⟨“ AB ”⟩ Word + ⟨“ AB ”⟩ : 0 ..^ ⟨“ AB ”⟩ +
13 s2len ⟨“ AB ”⟩ = 2
14 13 eqcomi 2 = ⟨“ AB ”⟩
15 14 oveq2i 0 ..^ 2 = 0 ..^ ⟨“ AB ”⟩
16 15 feq2i ⟨“ AB ”⟩ : 0 ..^ 2 + ⟨“ AB ”⟩ : 0 ..^ ⟨“ AB ”⟩ +
17 12 16 sylibr ⟨“ AB ”⟩ Word + ⟨“ AB ”⟩ : 0 ..^ 2 +
18 11 17 syl φ ⟨“ AB ”⟩ : 0 ..^ 2 +
19 3 5 10 18 amgmlem φ mulGrp fld ⟨“ AB ”⟩ 1 0 ..^ 2 fld ⟨“ AB ”⟩ 0 ..^ 2
20 cnring fld Ring
21 3 ringmgp fld Ring mulGrp fld Mnd
22 20 21 mp1i φ mulGrp fld Mnd
23 1 rpcnd φ A
24 2 rpcnd φ B
25 cnfldbas = Base fld
26 3 25 mgpbas = Base mulGrp fld
27 cnfldmul × = fld
28 3 27 mgpplusg × = + mulGrp fld
29 26 28 gsumws2 mulGrp fld Mnd A B mulGrp fld ⟨“ AB ”⟩ = A B
30 22 23 24 29 syl3anc φ mulGrp fld ⟨“ AB ”⟩ = A B
31 2nn0 2 0
32 hashfzo0 2 0 0 ..^ 2 = 2
33 31 32 mp1i φ 0 ..^ 2 = 2
34 33 oveq2d φ 1 0 ..^ 2 = 1 2
35 30 34 oveq12d φ mulGrp fld ⟨“ AB ”⟩ 1 0 ..^ 2 = A B 1 2
36 ringmnd fld Ring fld Mnd
37 20 36 mp1i φ fld Mnd
38 cnfldadd + = + fld
39 25 38 gsumws2 fld Mnd A B fld ⟨“ AB ”⟩ = A + B
40 37 23 24 39 syl3anc φ fld ⟨“ AB ”⟩ = A + B
41 40 33 oveq12d φ fld ⟨“ AB ”⟩ 0 ..^ 2 = A + B 2
42 19 35 41 3brtr3d φ A B 1 2 A + B 2