Step |
Hyp |
Ref |
Expression |
1 |
|
amgm2d.0 |
|
2 |
|
amgm2d.1 |
|
3 |
|
eqid |
|
4 |
|
fzofi |
|
5 |
4
|
a1i |
|
6 |
|
2nn |
|
7 |
|
lbfzo0 |
|
8 |
6 7
|
mpbir |
|
9 |
8
|
ne0ii |
|
10 |
9
|
a1i |
|
11 |
1 2
|
s2cld |
|
12 |
|
wrdf |
|
13 |
|
s2len |
|
14 |
13
|
eqcomi |
|
15 |
14
|
oveq2i |
|
16 |
15
|
feq2i |
|
17 |
12 16
|
sylibr |
|
18 |
11 17
|
syl |
|
19 |
3 5 10 18
|
amgmlem |
|
20 |
|
cnring |
|
21 |
3
|
ringmgp |
|
22 |
20 21
|
mp1i |
|
23 |
1
|
rpcnd |
|
24 |
2
|
rpcnd |
|
25 |
|
cnfldbas |
|
26 |
3 25
|
mgpbas |
|
27 |
|
cnfldmul |
|
28 |
3 27
|
mgpplusg |
|
29 |
26 28
|
gsumws2 |
|
30 |
22 23 24 29
|
syl3anc |
|
31 |
|
2nn0 |
|
32 |
|
hashfzo0 |
|
33 |
31 32
|
mp1i |
|
34 |
33
|
oveq2d |
|
35 |
30 34
|
oveq12d |
|
36 |
|
ringmnd |
|
37 |
20 36
|
mp1i |
|
38 |
|
cnfldadd |
|
39 |
25 38
|
gsumws2 |
|
40 |
37 23 24 39
|
syl3anc |
|
41 |
40 33
|
oveq12d |
|
42 |
19 35 41
|
3brtr3d |
|