| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgm2d.0 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | amgm2d.1 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 3 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 4 |  | fzofi | ⊢ ( 0 ..^ 2 )  ∈  Fin | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ( 0 ..^ 2 )  ∈  Fin ) | 
						
							| 6 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 7 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 2 )  ↔  2  ∈  ℕ ) | 
						
							| 8 | 6 7 | mpbir | ⊢ 0  ∈  ( 0 ..^ 2 ) | 
						
							| 9 | 8 | ne0ii | ⊢ ( 0 ..^ 2 )  ≠  ∅ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ( 0 ..^ 2 )  ≠  ∅ ) | 
						
							| 11 | 1 2 | s2cld | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 ”〉  ∈  Word  ℝ+ ) | 
						
							| 12 |  | wrdf | ⊢ ( 〈“ 𝐴 𝐵 ”〉  ∈  Word  ℝ+  →  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 13 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 )  =  2 | 
						
							| 14 | 13 | eqcomi | ⊢ 2  =  ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) | 
						
							| 15 | 14 | oveq2i | ⊢ ( 0 ..^ 2 )  =  ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) | 
						
							| 16 | 15 | feq2i | ⊢ ( 〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+  ↔  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 17 | 12 16 | sylibr | ⊢ ( 〈“ 𝐴 𝐵 ”〉  ∈  Word  ℝ+  →  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) | 
						
							| 18 | 11 17 | syl | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 ”〉 : ( 0 ..^ 2 ) ⟶ ℝ+ ) | 
						
							| 19 | 3 5 10 18 | amgmlem | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 ”〉 ) ↑𝑐 ( 1  /  ( ♯ ‘ ( 0 ..^ 2 ) ) ) )  ≤  ( ( ℂfld  Σg  〈“ 𝐴 𝐵 ”〉 )  /  ( ♯ ‘ ( 0 ..^ 2 ) ) ) ) | 
						
							| 20 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 21 | 3 | ringmgp | ⊢ ( ℂfld  ∈  Ring  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 22 | 20 21 | mp1i | ⊢ ( 𝜑  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 23 | 1 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 24 | 2 | rpcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 25 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 26 | 3 25 | mgpbas | ⊢ ℂ  =  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 27 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 28 | 3 27 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 29 | 26 28 | gsumws2 | ⊢ ( ( ( mulGrp ‘ ℂfld )  ∈  Mnd  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 ”〉 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 30 | 22 23 24 29 | syl3anc | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 ”〉 )  =  ( 𝐴  ·  𝐵 ) ) | 
						
							| 31 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 32 |  | hashfzo0 | ⊢ ( 2  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 2 ) )  =  2 ) | 
						
							| 33 | 31 32 | mp1i | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ..^ 2 ) )  =  2 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝜑  →  ( 1  /  ( ♯ ‘ ( 0 ..^ 2 ) ) )  =  ( 1  /  2 ) ) | 
						
							| 35 | 30 34 | oveq12d | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 ”〉 ) ↑𝑐 ( 1  /  ( ♯ ‘ ( 0 ..^ 2 ) ) ) )  =  ( ( 𝐴  ·  𝐵 ) ↑𝑐 ( 1  /  2 ) ) ) | 
						
							| 36 |  | ringmnd | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Mnd ) | 
						
							| 37 | 20 36 | mp1i | ⊢ ( 𝜑  →  ℂfld  ∈  Mnd ) | 
						
							| 38 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 39 | 25 38 | gsumws2 | ⊢ ( ( ℂfld  ∈  Mnd  ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℂfld  Σg  〈“ 𝐴 𝐵 ”〉 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 40 | 37 23 24 39 | syl3anc | ⊢ ( 𝜑  →  ( ℂfld  Σg  〈“ 𝐴 𝐵 ”〉 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 41 | 40 33 | oveq12d | ⊢ ( 𝜑  →  ( ( ℂfld  Σg  〈“ 𝐴 𝐵 ”〉 )  /  ( ♯ ‘ ( 0 ..^ 2 ) ) )  =  ( ( 𝐴  +  𝐵 )  /  2 ) ) | 
						
							| 42 | 19 35 41 | 3brtr3d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 ) ↑𝑐 ( 1  /  2 ) )  ≤  ( ( 𝐴  +  𝐵 )  /  2 ) ) |