| Step |
Hyp |
Ref |
Expression |
| 1 |
|
amgm.1 |
⊢ 𝑀 = ( mulGrp ‘ ℂfld ) |
| 2 |
|
amgm.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
amgm.3 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 4 |
|
amgm.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ+ ) |
| 5 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 6 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 7 |
|
ringabl |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Abel ) |
| 8 |
6 7
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Abel ) |
| 9 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 10 |
9
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 11 |
|
subrgsubg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
| 12 |
10 11
|
mp1i |
⊢ ( 𝜑 → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
| 13 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 14 |
13
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 15 |
14
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 16 |
15
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) : 𝐴 ⟶ ℝ ) |
| 17 |
|
c0ex |
⊢ 0 ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 19 |
16 2 18
|
fdmfifsupp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) finSupp 0 ) |
| 20 |
5 8 2 12 16 19
|
gsumsubgcl |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ∈ ℂ ) |
| 22 |
|
hashnncl |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |
| 23 |
2 22
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |
| 24 |
3 23
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 25 |
24
|
nncnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 26 |
24
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ≠ 0 ) |
| 27 |
21 25 26
|
divnegd |
⊢ ( 𝜑 → - ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) = ( - ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ) |
| 28 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 29 |
2 28
|
gsumfsum |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝐴 ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 30 |
28
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → - - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) = ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 31 |
30
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 - - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ 𝐴 ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 32 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
| 33 |
2 32
|
fsumneg |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 - - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) = - Σ 𝑘 ∈ 𝐴 - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 |
29 31 33
|
3eqtr2rd |
⊢ ( 𝜑 → - Σ 𝑘 ∈ 𝐴 - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 35 |
2 32
|
gsumfsum |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = Σ 𝑘 ∈ 𝐴 - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 36 |
35
|
negeqd |
⊢ ( 𝜑 → - ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = - Σ 𝑘 ∈ 𝐴 - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 37 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 38 |
|
relogf1o |
⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
| 39 |
|
f1of |
⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 40 |
38 39
|
mp1i |
⊢ ( 𝜑 → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 41 |
40
|
feqmptd |
⊢ ( 𝜑 → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) ) |
| 42 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
| 43 |
42
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
| 44 |
41 43
|
eqtrdi |
⊢ ( 𝜑 → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 45 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 46 |
13 37 44 45
|
fmptco |
⊢ ( 𝜑 → ( ( log ↾ ℝ+ ) ∘ 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 47 |
46
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( log ↾ ℝ+ ) ∘ 𝐹 ) ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 48 |
34 36 47
|
3eqtr4d |
⊢ ( 𝜑 → - ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ℂfld Σg ( ( log ↾ ℝ+ ) ∘ 𝐹 ) ) ) |
| 49 |
1
|
oveq1i |
⊢ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
| 50 |
49
|
rpmsubg |
⊢ ℝ+ ∈ ( SubGrp ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) |
| 51 |
|
subgsubm |
⊢ ( ℝ+ ∈ ( SubGrp ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) → ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) ) |
| 52 |
50 51
|
ax-mp |
⊢ ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) |
| 53 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 54 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 55 |
53 5 54
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 56 |
55 1
|
unitsubm |
⊢ ( ℂfld ∈ Ring → ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 57 |
|
eqid |
⊢ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) = ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) |
| 58 |
57
|
subsubm |
⊢ ( ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ 𝑀 ) → ( ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) ↔ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) ) ) |
| 59 |
6 56 58
|
mp2b |
⊢ ( ℝ+ ∈ ( SubMnd ‘ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) ) ↔ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) ) |
| 60 |
52 59
|
mpbi |
⊢ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) |
| 61 |
60
|
simpli |
⊢ ℝ+ ∈ ( SubMnd ‘ 𝑀 ) |
| 62 |
|
eqid |
⊢ ( 𝑀 ↾s ℝ+ ) = ( 𝑀 ↾s ℝ+ ) |
| 63 |
62
|
submbas |
⊢ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) → ℝ+ = ( Base ‘ ( 𝑀 ↾s ℝ+ ) ) ) |
| 64 |
61 63
|
ax-mp |
⊢ ℝ+ = ( Base ‘ ( 𝑀 ↾s ℝ+ ) ) |
| 65 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 66 |
1 65
|
ringidval |
⊢ 1 = ( 0g ‘ 𝑀 ) |
| 67 |
62 66
|
subm0 |
⊢ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) → 1 = ( 0g ‘ ( 𝑀 ↾s ℝ+ ) ) ) |
| 68 |
61 67
|
ax-mp |
⊢ 1 = ( 0g ‘ ( 𝑀 ↾s ℝ+ ) ) |
| 69 |
|
cncrng |
⊢ ℂfld ∈ CRing |
| 70 |
1
|
crngmgp |
⊢ ( ℂfld ∈ CRing → 𝑀 ∈ CMnd ) |
| 71 |
69 70
|
mp1i |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 72 |
62
|
submmnd |
⊢ ( ℝ+ ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑀 ↾s ℝ+ ) ∈ Mnd ) |
| 73 |
61 72
|
mp1i |
⊢ ( 𝜑 → ( 𝑀 ↾s ℝ+ ) ∈ Mnd ) |
| 74 |
62
|
subcmn |
⊢ ( ( 𝑀 ∈ CMnd ∧ ( 𝑀 ↾s ℝ+ ) ∈ Mnd ) → ( 𝑀 ↾s ℝ+ ) ∈ CMnd ) |
| 75 |
71 73 74
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ↾s ℝ+ ) ∈ CMnd ) |
| 76 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 77 |
76
|
subrgring |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝfld ∈ Ring ) |
| 78 |
10 77
|
ax-mp |
⊢ ℝfld ∈ Ring |
| 79 |
|
ringmnd |
⊢ ( ℝfld ∈ Ring → ℝfld ∈ Mnd ) |
| 80 |
78 79
|
mp1i |
⊢ ( 𝜑 → ℝfld ∈ Mnd ) |
| 81 |
1
|
oveq1i |
⊢ ( 𝑀 ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) |
| 82 |
81
|
reloggim |
⊢ ( log ↾ ℝ+ ) ∈ ( ( 𝑀 ↾s ℝ+ ) GrpIso ℝfld ) |
| 83 |
|
gimghm |
⊢ ( ( log ↾ ℝ+ ) ∈ ( ( 𝑀 ↾s ℝ+ ) GrpIso ℝfld ) → ( log ↾ ℝ+ ) ∈ ( ( 𝑀 ↾s ℝ+ ) GrpHom ℝfld ) ) |
| 84 |
82 83
|
ax-mp |
⊢ ( log ↾ ℝ+ ) ∈ ( ( 𝑀 ↾s ℝ+ ) GrpHom ℝfld ) |
| 85 |
|
ghmmhm |
⊢ ( ( log ↾ ℝ+ ) ∈ ( ( 𝑀 ↾s ℝ+ ) GrpHom ℝfld ) → ( log ↾ ℝ+ ) ∈ ( ( 𝑀 ↾s ℝ+ ) MndHom ℝfld ) ) |
| 86 |
84 85
|
mp1i |
⊢ ( 𝜑 → ( log ↾ ℝ+ ) ∈ ( ( 𝑀 ↾s ℝ+ ) MndHom ℝfld ) ) |
| 87 |
|
1ex |
⊢ 1 ∈ V |
| 88 |
87
|
a1i |
⊢ ( 𝜑 → 1 ∈ V ) |
| 89 |
4 2 88
|
fdmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp 1 ) |
| 90 |
64 68 75 80 2 86 4 89
|
gsummhm |
⊢ ( 𝜑 → ( ℝfld Σg ( ( log ↾ ℝ+ ) ∘ 𝐹 ) ) = ( ( log ↾ ℝ+ ) ‘ ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) ) |
| 91 |
|
subgsubm |
⊢ ( ℝ ∈ ( SubGrp ‘ ℂfld ) → ℝ ∈ ( SubMnd ‘ ℂfld ) ) |
| 92 |
12 91
|
syl |
⊢ ( 𝜑 → ℝ ∈ ( SubMnd ‘ ℂfld ) ) |
| 93 |
|
fco |
⊢ ( ( ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℝ+ ) → ( ( log ↾ ℝ+ ) ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 94 |
40 4 93
|
syl2anc |
⊢ ( 𝜑 → ( ( log ↾ ℝ+ ) ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 95 |
2 92 94 76
|
gsumsubm |
⊢ ( 𝜑 → ( ℂfld Σg ( ( log ↾ ℝ+ ) ∘ 𝐹 ) ) = ( ℝfld Σg ( ( log ↾ ℝ+ ) ∘ 𝐹 ) ) ) |
| 96 |
61
|
a1i |
⊢ ( 𝜑 → ℝ+ ∈ ( SubMnd ‘ 𝑀 ) ) |
| 97 |
2 96 4 62
|
gsumsubm |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) = ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) |
| 98 |
97
|
fveq2d |
⊢ ( 𝜑 → ( ( log ↾ ℝ+ ) ‘ ( 𝑀 Σg 𝐹 ) ) = ( ( log ↾ ℝ+ ) ‘ ( ( 𝑀 ↾s ℝ+ ) Σg 𝐹 ) ) ) |
| 99 |
90 95 98
|
3eqtr4d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( log ↾ ℝ+ ) ∘ 𝐹 ) ) = ( ( log ↾ ℝ+ ) ‘ ( 𝑀 Σg 𝐹 ) ) ) |
| 100 |
66 71 2 96 4 89
|
gsumsubmcl |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) ∈ ℝ+ ) |
| 101 |
100
|
fvresd |
⊢ ( 𝜑 → ( ( log ↾ ℝ+ ) ‘ ( 𝑀 Σg 𝐹 ) ) = ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) |
| 102 |
48 99 101
|
3eqtrd |
⊢ ( 𝜑 → - ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) |
| 103 |
102
|
oveq1d |
⊢ ( 𝜑 → ( - ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) = ( ( log ‘ ( 𝑀 Σg 𝐹 ) ) / ( ♯ ‘ 𝐴 ) ) ) |
| 104 |
100
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝑀 Σg 𝐹 ) ) ∈ ℝ ) |
| 105 |
104
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 𝑀 Σg 𝐹 ) ) ∈ ℂ ) |
| 106 |
105 25 26
|
divrec2d |
⊢ ( 𝜑 → ( ( log ‘ ( 𝑀 Σg 𝐹 ) ) / ( ♯ ‘ 𝐴 ) ) = ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ) |
| 107 |
27 103 106
|
3eqtrd |
⊢ ( 𝜑 → - ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) = ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ) |
| 108 |
37
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg 𝐹 ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 109 |
13
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 110 |
2 109
|
gsumfsum |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ) |
| 111 |
108 110
|
eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg 𝐹 ) = Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ) |
| 112 |
2 3 13
|
fsumrpcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 113 |
111 112
|
eqeltrd |
⊢ ( 𝜑 → ( ℂfld Σg 𝐹 ) ∈ ℝ+ ) |
| 114 |
24
|
nnrpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℝ+ ) |
| 115 |
113 114
|
rpdivcld |
⊢ ( 𝜑 → ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 116 |
115
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 117 |
20 24
|
nndivred |
⊢ ( 𝜑 → ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 118 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 119 |
118
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 120 |
|
relogcl |
⊢ ( 𝑤 ∈ ℝ+ → ( log ‘ 𝑤 ) ∈ ℝ ) |
| 121 |
120
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( log ‘ 𝑤 ) ∈ ℝ ) |
| 122 |
121
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → - ( log ‘ 𝑤 ) ∈ ℝ ) |
| 123 |
122
|
fmpttd |
⊢ ( 𝜑 → ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) : ℝ+ ⟶ ℝ ) |
| 124 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 125 |
124
|
eleq2i |
⊢ ( 𝑎 ∈ ( 0 (,) +∞ ) ↔ 𝑎 ∈ ℝ+ ) |
| 126 |
124
|
eleq2i |
⊢ ( 𝑏 ∈ ( 0 (,) +∞ ) ↔ 𝑏 ∈ ℝ+ ) |
| 127 |
|
iccssioo2 |
⊢ ( ( 𝑎 ∈ ( 0 (,) +∞ ) ∧ 𝑏 ∈ ( 0 (,) +∞ ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 0 (,) +∞ ) ) |
| 128 |
125 126 127
|
syl2anbr |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 0 (,) +∞ ) ) |
| 129 |
128 124
|
sseqtrdi |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ+ ) |
| 130 |
129
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ+ ) |
| 131 |
24
|
nnrecred |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 132 |
114
|
rpreccld |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 133 |
132
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 1 / ( ♯ ‘ 𝐴 ) ) ) |
| 134 |
|
elrege0 |
⊢ ( ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
| 135 |
131 133 134
|
sylanbrc |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ( 0 [,) +∞ ) ) |
| 136 |
|
fconst6g |
⊢ ( ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ( 0 [,) +∞ ) → ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
| 137 |
135 136
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
| 138 |
|
0lt1 |
⊢ 0 < 1 |
| 139 |
|
fconstmpt |
⊢ ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) = ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) |
| 140 |
139
|
oveq2i |
⊢ ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
| 141 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
| 142 |
6 141
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Mnd ) |
| 143 |
131
|
recnd |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 144 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
| 145 |
53 144
|
gsumconst |
⊢ ( ( ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
| 146 |
142 2 143 145
|
syl3anc |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
| 147 |
24
|
nnzd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 148 |
|
cnfldmulg |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
| 149 |
147 143 148
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ( .g ‘ ℂfld ) ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
| 150 |
25 26
|
recidd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) · ( 1 / ( ♯ ‘ 𝐴 ) ) ) = 1 ) |
| 151 |
146 149 150
|
3eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) = 1 ) |
| 152 |
140 151
|
eqtrid |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) = 1 ) |
| 153 |
138 152
|
breqtrrid |
⊢ ( 𝜑 → 0 < ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) |
| 154 |
|
logccv |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) < ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 155 |
154
|
3adant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) < ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 156 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 157 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑡 ∈ ( 0 (,) 1 ) ) |
| 158 |
156 157
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑡 ∈ ℝ ) |
| 159 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑥 ∈ ℝ+ ) |
| 160 |
159
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 161 |
158 160
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑡 · ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 162 |
|
1re |
⊢ 1 ∈ ℝ |
| 163 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 1 − 𝑡 ) ∈ ℝ ) |
| 164 |
162 158 163
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑡 ) ∈ ℝ ) |
| 165 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑦 ∈ ℝ+ ) |
| 166 |
165
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝑦 ) ∈ ℝ ) |
| 167 |
164 166
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ∈ ℝ ) |
| 168 |
161 167
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) ∈ ℝ ) |
| 169 |
|
simp1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝜑 ) |
| 170 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
| 171 |
170 157
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
| 172 |
119 130
|
cvxcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ℝ+ ) |
| 173 |
169 159 165 171 172
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ℝ+ ) |
| 174 |
173
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ℝ ) |
| 175 |
168 174
|
ltnegd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) < ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ↔ - ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < - ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) ) ) |
| 176 |
155 175
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → - ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < - ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) ) |
| 177 |
|
fveq2 |
⊢ ( 𝑤 = ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) → ( log ‘ 𝑤 ) = ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 178 |
177
|
negeqd |
⊢ ( 𝑤 = ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) → - ( log ‘ 𝑤 ) = - ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 179 |
|
eqid |
⊢ ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) = ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) |
| 180 |
|
negex |
⊢ - ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ V |
| 181 |
178 179 180
|
fvmpt |
⊢ ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ℝ+ → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = - ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 182 |
173 181
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = - ( log ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 183 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( log ‘ 𝑤 ) = ( log ‘ 𝑥 ) ) |
| 184 |
183
|
negeqd |
⊢ ( 𝑤 = 𝑥 → - ( log ‘ 𝑤 ) = - ( log ‘ 𝑥 ) ) |
| 185 |
|
negex |
⊢ - ( log ‘ 𝑥 ) ∈ V |
| 186 |
184 179 185
|
fvmpt |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑥 ) = - ( log ‘ 𝑥 ) ) |
| 187 |
159 186
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑥 ) = - ( log ‘ 𝑥 ) ) |
| 188 |
187
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑡 · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑥 ) ) = ( 𝑡 · - ( log ‘ 𝑥 ) ) ) |
| 189 |
158
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → 𝑡 ∈ ℂ ) |
| 190 |
160
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 191 |
189 190
|
mulneg2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑡 · - ( log ‘ 𝑥 ) ) = - ( 𝑡 · ( log ‘ 𝑥 ) ) ) |
| 192 |
188 191
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑡 · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑥 ) ) = - ( 𝑡 · ( log ‘ 𝑥 ) ) ) |
| 193 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( log ‘ 𝑤 ) = ( log ‘ 𝑦 ) ) |
| 194 |
193
|
negeqd |
⊢ ( 𝑤 = 𝑦 → - ( log ‘ 𝑤 ) = - ( log ‘ 𝑦 ) ) |
| 195 |
|
negex |
⊢ - ( log ‘ 𝑦 ) ∈ V |
| 196 |
194 179 195
|
fvmpt |
⊢ ( 𝑦 ∈ ℝ+ → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑦 ) = - ( log ‘ 𝑦 ) ) |
| 197 |
165 196
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑦 ) = - ( log ‘ 𝑦 ) ) |
| 198 |
197
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑡 ) · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑦 ) ) = ( ( 1 − 𝑡 ) · - ( log ‘ 𝑦 ) ) ) |
| 199 |
164
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑡 ) ∈ ℂ ) |
| 200 |
166
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
| 201 |
199 200
|
mulneg2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑡 ) · - ( log ‘ 𝑦 ) ) = - ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) |
| 202 |
198 201
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑡 ) · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑦 ) ) = - ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) |
| 203 |
192 202
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑡 · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑦 ) ) ) = ( - ( 𝑡 · ( log ‘ 𝑥 ) ) + - ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) ) |
| 204 |
161
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝑡 · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 205 |
167
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ∈ ℂ ) |
| 206 |
204 205
|
negdid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → - ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) = ( - ( 𝑡 · ( log ‘ 𝑥 ) ) + - ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) ) |
| 207 |
203 206
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑡 · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑦 ) ) ) = - ( ( 𝑡 · ( log ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( log ‘ 𝑦 ) ) ) ) |
| 208 |
176 182 207
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑦 ) ) ) ) |
| 209 |
119 123 130 208
|
scvxcvx |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℝ+ ∧ 𝑣 ∈ ℝ+ ∧ 𝑠 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( 𝑠 · 𝑢 ) + ( ( 1 − 𝑠 ) · 𝑣 ) ) ) ≤ ( ( 𝑠 · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑢 ) ) + ( ( 1 − 𝑠 ) · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ 𝑣 ) ) ) ) |
| 210 |
119 123 130 2 137 4 153 209
|
jensen |
⊢ ( 𝜑 → ( ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ∈ ℝ+ ∧ ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) ) |
| 211 |
210
|
simprd |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) |
| 212 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 213 |
139
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) = ( 𝑘 ∈ 𝐴 ↦ ( 1 / ( ♯ ‘ 𝐴 ) ) ) ) |
| 214 |
2 212 13 213 37
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 215 |
214
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 216 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 217 |
6
|
a1i |
⊢ ( 𝜑 → ℂfld ∈ Ring ) |
| 218 |
109
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝐴 ⟶ ℂ ) |
| 219 |
218 2 18
|
fdmfifsupp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) finSupp 0 ) |
| 220 |
53 5 216 217 2 143 109 219
|
gsummulc2 |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 221 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ+ ∧ ℝ+ ⊆ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 222 |
4 118 221
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 223 |
4 2 18
|
fdmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 224 |
5 8 2 12 222 223
|
gsumsubgcl |
⊢ ( 𝜑 → ( ℂfld Σg 𝐹 ) ∈ ℝ ) |
| 225 |
224
|
recnd |
⊢ ( 𝜑 → ( ℂfld Σg 𝐹 ) ∈ ℂ ) |
| 226 |
225 25 26
|
divrec2d |
⊢ ( 𝜑 → ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) = ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( ℂfld Σg 𝐹 ) ) ) |
| 227 |
108
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( ℂfld Σg 𝐹 ) ) = ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 228 |
226 227
|
eqtr2d |
⊢ ( 𝜑 → ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |
| 229 |
215 220 228
|
3eqtrd |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |
| 230 |
229 152
|
oveq12d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) / 1 ) ) |
| 231 |
224 24
|
nndivred |
⊢ ( 𝜑 → ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 232 |
231
|
recnd |
⊢ ( 𝜑 → ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 233 |
232
|
div1d |
⊢ ( 𝜑 → ( ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) / 1 ) = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |
| 234 |
230 233
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |
| 235 |
234
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) = ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 236 |
|
fveq2 |
⊢ ( 𝑤 = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) → ( log ‘ 𝑤 ) = ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 237 |
236
|
negeqd |
⊢ ( 𝑤 = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) → - ( log ‘ 𝑤 ) = - ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 238 |
|
negex |
⊢ - ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ∈ V |
| 239 |
237 179 238
|
fvmpt |
⊢ ( ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ∈ ℝ+ → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) = - ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 240 |
115 239
|
syl |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) = - ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 241 |
235 240
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ‘ ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · 𝐹 ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) ) = - ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 242 |
53 5 216 217 2 143 32 19
|
gsummulc2 |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) = ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 243 |
|
negex |
⊢ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 244 |
243
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V ) |
| 245 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) = ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ) |
| 246 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑘 ) → ( log ‘ 𝑤 ) = ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 247 |
246
|
negeqd |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑘 ) → - ( log ‘ 𝑤 ) = - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 248 |
13 37 245 247
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 249 |
2 212 244 213 248
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 250 |
249
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) ) ) = ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 251 |
21 25 26
|
divrec2d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) = ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 252 |
242 250 251
|
3eqtr4d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) ) ) = ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ) |
| 253 |
252 152
|
oveq12d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) / 1 ) ) |
| 254 |
117
|
recnd |
⊢ ( 𝜑 → ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 255 |
254
|
div1d |
⊢ ( 𝜑 → ( ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) / 1 ) = ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ) |
| 256 |
253 255
|
eqtrd |
⊢ ( 𝜑 → ( ( ℂfld Σg ( ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ∘f · ( ( 𝑤 ∈ ℝ+ ↦ - ( log ‘ 𝑤 ) ) ∘ 𝐹 ) ) ) / ( ℂfld Σg ( 𝐴 × { ( 1 / ( ♯ ‘ 𝐴 ) ) } ) ) ) = ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ) |
| 257 |
211 241 256
|
3brtr3d |
⊢ ( 𝜑 → - ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ≤ ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ) |
| 258 |
116 117 257
|
lenegcon1d |
⊢ ( 𝜑 → - ( ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ - ( log ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) / ( ♯ ‘ 𝐴 ) ) ≤ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 259 |
107 258
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ≤ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) |
| 260 |
131 104
|
remulcld |
⊢ ( 𝜑 → ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ∈ ℝ ) |
| 261 |
|
efle |
⊢ ( ( ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ∈ ℝ ∧ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ∈ ℝ ) → ( ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ≤ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ↔ ( exp ‘ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ) ≤ ( exp ‘ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
| 262 |
260 116 261
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ≤ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ↔ ( exp ‘ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ) ≤ ( exp ‘ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
| 263 |
259 262
|
mpbid |
⊢ ( 𝜑 → ( exp ‘ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ) ≤ ( exp ‘ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 264 |
100
|
rpcnd |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) ∈ ℂ ) |
| 265 |
100
|
rpne0d |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) ≠ 0 ) |
| 266 |
264 265 143
|
cxpefd |
⊢ ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) = ( exp ‘ ( ( 1 / ( ♯ ‘ 𝐴 ) ) · ( log ‘ ( 𝑀 Σg 𝐹 ) ) ) ) ) |
| 267 |
115
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) = ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |
| 268 |
267
|
eqcomd |
⊢ ( 𝜑 → ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) = ( exp ‘ ( log ‘ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 269 |
263 266 268
|
3brtr4d |
⊢ ( 𝜑 → ( ( 𝑀 Σg 𝐹 ) ↑𝑐 ( 1 / ( ♯ ‘ 𝐴 ) ) ) ≤ ( ( ℂfld Σg 𝐹 ) / ( ♯ ‘ 𝐴 ) ) ) |