| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ+ ) |
| 2 |
1
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ ) |
| 3 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ+ ) |
| 4 |
3
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ ) |
| 5 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 < 𝐵 ) |
| 6 |
1
|
rpgt0d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 0 < 𝐴 ) |
| 7 |
4
|
ltpnfd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 < +∞ ) |
| 8 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 10 |
|
iccssioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 < 𝐴 ∧ 𝐵 < +∞ ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 0 (,) +∞ ) ) |
| 11 |
8 9 10
|
mpanl12 |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 < +∞ ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 0 (,) +∞ ) ) |
| 12 |
6 7 11
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 0 (,) +∞ ) ) |
| 13 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 14 |
12 13
|
sseqtrdi |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ+ ) |
| 15 |
14
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ+ ) |
| 16 |
15
|
relogcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 17 |
16
|
renegcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( log ‘ 𝑥 ) ∈ ℝ ) |
| 18 |
17
|
fmpttd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 20 |
14
|
resabs1d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( log ↾ ℝ+ ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( log ↾ ( 𝐴 [,] 𝐵 ) ) ) |
| 21 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 22 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ+ –cn→ ℝ ) ⊆ ( ℝ+ –cn→ ℂ ) ) |
| 23 |
19 21 22
|
mp2an |
⊢ ( ℝ+ –cn→ ℝ ) ⊆ ( ℝ+ –cn→ ℂ ) |
| 24 |
|
relogcn |
⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |
| 25 |
23 24
|
sselii |
⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) |
| 26 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ+ → ( ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) → ( ( log ↾ ℝ+ ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
| 27 |
14 25 26
|
mpisyl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( log ↾ ℝ+ ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 28 |
20 27
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 29 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
| 30 |
29
|
negeqd |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → - ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = - ( log ‘ 𝑥 ) ) |
| 31 |
30
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) |
| 32 |
31
|
eqcomi |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) |
| 33 |
32
|
negfcncf |
⊢ ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 34 |
28 33
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 35 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 36 |
19 34 35
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 37 |
18 36
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 38 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 39 |
|
ltso |
⊢ < Or ℝ |
| 40 |
|
soss |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( < Or ℝ → < Or ( 𝐴 (,) 𝐵 ) ) ) |
| 41 |
38 39 40
|
mp2 |
⊢ < Or ( 𝐴 (,) 𝐵 ) |
| 42 |
41
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → < Or ( 𝐴 (,) 𝐵 ) ) |
| 43 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 44 |
43 14
|
sstrid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ+ ) |
| 45 |
44
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ+ ) |
| 46 |
45
|
rprecred |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 47 |
46
|
renegcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → - ( 1 / 𝑥 ) ∈ ℝ ) |
| 48 |
47
|
fmpttd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 49 |
48
|
frnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ⊆ ℝ ) |
| 50 |
|
soss |
⊢ ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ⊆ ℝ → ( < Or ℝ → < Or ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) |
| 51 |
49 39 50
|
mpisyl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → < Or ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 52 |
|
sopo |
⊢ ( < Or ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) → < Po ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 53 |
51 52
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → < Po ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 54 |
|
negex |
⊢ - ( 1 / 𝑥 ) ∈ V |
| 55 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) |
| 56 |
54 55
|
fnmpti |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Fn ( 𝐴 (,) 𝐵 ) |
| 57 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Fn ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 58 |
56 57
|
mpbi |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) |
| 59 |
58
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 60 |
44
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 ∈ ℝ+ ) |
| 61 |
60
|
adantrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝑧 ∈ ℝ+ ) |
| 62 |
61
|
rprecred |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 1 / 𝑧 ) ∈ ℝ ) |
| 63 |
44
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ℝ+ ) |
| 64 |
63
|
adantrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝑦 ∈ ℝ+ ) |
| 65 |
64
|
rprecred |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 66 |
62 65
|
ltnegd |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( ( 1 / 𝑧 ) < ( 1 / 𝑦 ) ↔ - ( 1 / 𝑦 ) < - ( 1 / 𝑧 ) ) ) |
| 67 |
64 61
|
ltrecd |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 < 𝑧 ↔ ( 1 / 𝑧 ) < ( 1 / 𝑦 ) ) ) |
| 68 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 / 𝑥 ) = ( 1 / 𝑦 ) ) |
| 69 |
68
|
negeqd |
⊢ ( 𝑥 = 𝑦 → - ( 1 / 𝑥 ) = - ( 1 / 𝑦 ) ) |
| 70 |
|
negex |
⊢ - ( 1 / 𝑦 ) ∈ V |
| 71 |
69 55 70
|
fvmpt |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) = - ( 1 / 𝑦 ) ) |
| 72 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 1 / 𝑥 ) = ( 1 / 𝑧 ) ) |
| 73 |
72
|
negeqd |
⊢ ( 𝑥 = 𝑧 → - ( 1 / 𝑥 ) = - ( 1 / 𝑧 ) ) |
| 74 |
|
negex |
⊢ - ( 1 / 𝑧 ) ∈ V |
| 75 |
73 55 74
|
fvmpt |
⊢ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) = - ( 1 / 𝑧 ) ) |
| 76 |
71 75
|
breqan12d |
⊢ ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ↔ - ( 1 / 𝑦 ) < - ( 1 / 𝑧 ) ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ↔ - ( 1 / 𝑦 ) < - ( 1 / 𝑧 ) ) ) |
| 78 |
66 67 77
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 < 𝑧 ↔ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 79 |
78
|
biimpd |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 < 𝑧 → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 80 |
79
|
ralrimivva |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑦 < 𝑧 → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 81 |
|
soisoi |
⊢ ( ( ( < Or ( 𝐴 (,) 𝐵 ) ∧ < Po ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ∧ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑦 < 𝑧 → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) |
| 82 |
42 53 59 80 81
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) |
| 83 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 84 |
83
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 85 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 86 |
85
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 87 |
86
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 88 |
87
|
negcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → - ( log ‘ 𝑥 ) ∈ ℂ ) |
| 89 |
54
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → - ( 1 / 𝑥 ) ∈ V ) |
| 90 |
|
ovexd |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ V ) |
| 91 |
|
relogf1o |
⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
| 92 |
|
f1of |
⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 93 |
91 92
|
mp1i |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 94 |
93
|
feqmptd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) ) |
| 95 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
| 96 |
95
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
| 97 |
94 96
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 98 |
97
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) ) |
| 99 |
|
dvrelog |
⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
| 100 |
98 99
|
eqtr3di |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 101 |
84 87 90 100
|
dvmptneg |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ - ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ - ( 1 / 𝑥 ) ) ) |
| 102 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 103 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 104 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 105 |
2 4 104
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 106 |
84 88 89 101 14 102 103 105
|
dvmptres2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 107 |
|
isoeq1 |
⊢ ( ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) ) |
| 108 |
106 107
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) ) |
| 109 |
82 108
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) |
| 110 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 (,) 1 ) ) |
| 111 |
|
eqid |
⊢ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) |
| 112 |
2 4 5 37 109 110 111
|
dvcvx |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) ) ) |
| 113 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 114 |
|
elioore |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → 𝑇 ∈ ℝ ) |
| 115 |
114
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℝ ) |
| 116 |
115
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℂ ) |
| 117 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 118 |
113 116 117
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 119 |
118
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) = ( 𝑇 · 𝐴 ) ) |
| 120 |
119
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) |
| 121 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
| 122 |
121 110
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
| 123 |
|
iirev |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
| 124 |
122 123
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
| 125 |
|
lincmb01cmp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 126 |
2 4 5 124 125
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 127 |
120 126
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 128 |
|
fveq2 |
⊢ ( 𝑥 = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) → ( log ‘ 𝑥 ) = ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 129 |
128
|
negeqd |
⊢ ( 𝑥 = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) → - ( log ‘ 𝑥 ) = - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 130 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) |
| 131 |
|
negex |
⊢ - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ∈ V |
| 132 |
129 130 131
|
fvmpt |
⊢ ( ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) = - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 133 |
127 132
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) = - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 134 |
1
|
rpxrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ* ) |
| 135 |
3
|
rpxrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ* ) |
| 136 |
2 4 5
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ≤ 𝐵 ) |
| 137 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 138 |
134 135 136 137
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 139 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( log ‘ 𝑥 ) = ( log ‘ 𝐴 ) ) |
| 140 |
139
|
negeqd |
⊢ ( 𝑥 = 𝐴 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝐴 ) ) |
| 141 |
|
negex |
⊢ - ( log ‘ 𝐴 ) ∈ V |
| 142 |
140 130 141
|
fvmpt |
⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) = - ( log ‘ 𝐴 ) ) |
| 143 |
138 142
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) = - ( log ‘ 𝐴 ) ) |
| 144 |
143
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) = ( 𝑇 · - ( log ‘ 𝐴 ) ) ) |
| 145 |
1
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 146 |
145
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 147 |
116 146
|
mulneg2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · - ( log ‘ 𝐴 ) ) = - ( 𝑇 · ( log ‘ 𝐴 ) ) ) |
| 148 |
144 147
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) = - ( 𝑇 · ( log ‘ 𝐴 ) ) ) |
| 149 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 150 |
134 135 136 149
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 151 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( log ‘ 𝑥 ) = ( log ‘ 𝐵 ) ) |
| 152 |
151
|
negeqd |
⊢ ( 𝑥 = 𝐵 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝐵 ) ) |
| 153 |
|
negex |
⊢ - ( log ‘ 𝐵 ) ∈ V |
| 154 |
152 130 153
|
fvmpt |
⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) = - ( log ‘ 𝐵 ) ) |
| 155 |
150 154
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) = - ( log ‘ 𝐵 ) ) |
| 156 |
155
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 1 − 𝑇 ) · - ( log ‘ 𝐵 ) ) ) |
| 157 |
|
1re |
⊢ 1 ∈ ℝ |
| 158 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 159 |
157 115 158
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 160 |
159
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 161 |
3
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 162 |
161
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 163 |
160 162
|
mulneg2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · - ( log ‘ 𝐵 ) ) = - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) |
| 164 |
156 163
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) = - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) |
| 165 |
148 164
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) ) = ( - ( 𝑇 · ( log ‘ 𝐴 ) ) + - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 166 |
115 145
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 167 |
166
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 168 |
159 161
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 169 |
168
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 170 |
167 169
|
negdid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) = ( - ( 𝑇 · ( log ‘ 𝐴 ) ) + - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 171 |
165 170
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) ) = - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 172 |
112 133 171
|
3brtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 173 |
166 168
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 174 |
14 127
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ℝ+ ) |
| 175 |
174
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ∈ ℝ ) |
| 176 |
173 175
|
ltnegd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) < ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ↔ - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) ) |
| 177 |
172 176
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) < ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |