| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR+ ) |
| 2 |
1
|
rpred |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR ) |
| 3 |
|
simpl2 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR+ ) |
| 4 |
3
|
rpred |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR ) |
| 5 |
|
simpl3 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B ) |
| 6 |
1
|
rpgt0d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> 0 < A ) |
| 7 |
4
|
ltpnfd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B < +oo ) |
| 8 |
|
0xr |
|- 0 e. RR* |
| 9 |
|
pnfxr |
|- +oo e. RR* |
| 10 |
|
iccssioo |
|- ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 < A /\ B < +oo ) ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
| 11 |
8 9 10
|
mpanl12 |
|- ( ( 0 < A /\ B < +oo ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
| 12 |
6 7 11
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
| 13 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
| 14 |
12 13
|
sseqtrdi |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR+ ) |
| 15 |
14
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> x e. RR+ ) |
| 16 |
15
|
relogcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> ( log ` x ) e. RR ) |
| 17 |
16
|
renegcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> -u ( log ` x ) e. RR ) |
| 18 |
17
|
fmpttd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) |
| 19 |
|
ax-resscn |
|- RR C_ CC |
| 20 |
14
|
resabs1d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) = ( log |` ( A [,] B ) ) ) |
| 21 |
|
ssid |
|- CC C_ CC |
| 22 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) ) |
| 23 |
19 21 22
|
mp2an |
|- ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) |
| 24 |
|
relogcn |
|- ( log |` RR+ ) e. ( RR+ -cn-> RR ) |
| 25 |
23 24
|
sselii |
|- ( log |` RR+ ) e. ( RR+ -cn-> CC ) |
| 26 |
|
rescncf |
|- ( ( A [,] B ) C_ RR+ -> ( ( log |` RR+ ) e. ( RR+ -cn-> CC ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
| 27 |
14 25 26
|
mpisyl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 28 |
20 27
|
eqeltrrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 29 |
|
fvres |
|- ( x e. ( A [,] B ) -> ( ( log |` ( A [,] B ) ) ` x ) = ( log ` x ) ) |
| 30 |
29
|
negeqd |
|- ( x e. ( A [,] B ) -> -u ( ( log |` ( A [,] B ) ) ` x ) = -u ( log ` x ) ) |
| 31 |
30
|
mpteq2ia |
|- ( x e. ( A [,] B ) |-> -u ( ( log |` ( A [,] B ) ) ` x ) ) = ( x e. ( A [,] B ) |-> -u ( log ` x ) ) |
| 32 |
31
|
eqcomi |
|- ( x e. ( A [,] B ) |-> -u ( log ` x ) ) = ( x e. ( A [,] B ) |-> -u ( ( log |` ( A [,] B ) ) ` x ) ) |
| 33 |
32
|
negfcncf |
|- ( ( log |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 34 |
28 33
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 35 |
|
cncfcdm |
|- ( ( RR C_ CC /\ ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) ) |
| 36 |
19 34 35
|
sylancr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) ) |
| 37 |
18 36
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 38 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 39 |
|
ltso |
|- < Or RR |
| 40 |
|
soss |
|- ( ( A (,) B ) C_ RR -> ( < Or RR -> < Or ( A (,) B ) ) ) |
| 41 |
38 39 40
|
mp2 |
|- < Or ( A (,) B ) |
| 42 |
41
|
a1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Or ( A (,) B ) ) |
| 43 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 44 |
43 14
|
sstrid |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR+ ) |
| 45 |
44
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> x e. RR+ ) |
| 46 |
45
|
rprecred |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> ( 1 / x ) e. RR ) |
| 47 |
46
|
renegcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> -u ( 1 / x ) e. RR ) |
| 48 |
47
|
fmpttd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) --> RR ) |
| 49 |
48
|
frnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) C_ RR ) |
| 50 |
|
soss |
|- ( ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) C_ RR -> ( < Or RR -> < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
| 51 |
49 39 50
|
mpisyl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 52 |
|
sopo |
|- ( < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) -> < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 53 |
51 52
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 54 |
|
negex |
|- -u ( 1 / x ) e. _V |
| 55 |
|
eqid |
|- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) |
| 56 |
54 55
|
fnmpti |
|- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Fn ( A (,) B ) |
| 57 |
|
dffn4 |
|- ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Fn ( A (,) B ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 58 |
56 57
|
mpbi |
|- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) |
| 59 |
58
|
a1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 60 |
44
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ z e. ( A (,) B ) ) -> z e. RR+ ) |
| 61 |
60
|
adantrl |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> z e. RR+ ) |
| 62 |
61
|
rprecred |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( 1 / z ) e. RR ) |
| 63 |
44
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ y e. ( A (,) B ) ) -> y e. RR+ ) |
| 64 |
63
|
adantrr |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> y e. RR+ ) |
| 65 |
64
|
rprecred |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( 1 / y ) e. RR ) |
| 66 |
62 65
|
ltnegd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( ( 1 / z ) < ( 1 / y ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
| 67 |
64 61
|
ltrecd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z <-> ( 1 / z ) < ( 1 / y ) ) ) |
| 68 |
|
oveq2 |
|- ( x = y -> ( 1 / x ) = ( 1 / y ) ) |
| 69 |
68
|
negeqd |
|- ( x = y -> -u ( 1 / x ) = -u ( 1 / y ) ) |
| 70 |
|
negex |
|- -u ( 1 / y ) e. _V |
| 71 |
69 55 70
|
fvmpt |
|- ( y e. ( A (,) B ) -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) = -u ( 1 / y ) ) |
| 72 |
|
oveq2 |
|- ( x = z -> ( 1 / x ) = ( 1 / z ) ) |
| 73 |
72
|
negeqd |
|- ( x = z -> -u ( 1 / x ) = -u ( 1 / z ) ) |
| 74 |
|
negex |
|- -u ( 1 / z ) e. _V |
| 75 |
73 55 74
|
fvmpt |
|- ( z e. ( A (,) B ) -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) = -u ( 1 / z ) ) |
| 76 |
71 75
|
breqan12d |
|- ( ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) -> ( ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
| 77 |
76
|
adantl |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
| 78 |
66 67 77
|
3bitr4d |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z <-> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
| 79 |
78
|
biimpd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
| 80 |
79
|
ralrimivva |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A. y e. ( A (,) B ) A. z e. ( A (,) B ) ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
| 81 |
|
soisoi |
|- ( ( ( < Or ( A (,) B ) /\ < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) /\ ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) /\ A. y e. ( A (,) B ) A. z e. ( A (,) B ) ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
| 82 |
42 53 59 80 81
|
syl22anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
| 83 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 84 |
83
|
a1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> RR e. { RR , CC } ) |
| 85 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 86 |
85
|
adantl |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 87 |
86
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 88 |
87
|
negcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> -u ( log ` x ) e. CC ) |
| 89 |
54
|
a1i |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> -u ( 1 / x ) e. _V ) |
| 90 |
|
ovexd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( 1 / x ) e. _V ) |
| 91 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
| 92 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
| 93 |
91 92
|
mp1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) : RR+ --> RR ) |
| 94 |
93
|
feqmptd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
| 95 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
| 96 |
95
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| 97 |
94 96
|
eqtrdi |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 98 |
97
|
oveq2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
| 99 |
|
dvrelog |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
| 100 |
98 99
|
eqtr3di |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 101 |
84 87 90 100
|
dvmptneg |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. RR+ |-> -u ( log ` x ) ) ) = ( x e. RR+ |-> -u ( 1 / x ) ) ) |
| 102 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 103 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 104 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 105 |
2 4 104
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 106 |
84 88 89 101 14 102 103 105
|
dvmptres2 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 107 |
|
isoeq1 |
|- ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) -> ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) ) |
| 108 |
106 107
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) ) |
| 109 |
82 108
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
| 110 |
|
simpr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) ) |
| 111 |
|
eqid |
|- ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
| 112 |
2 4 5 37 109 110 111
|
dvcvx |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) ) |
| 113 |
|
ax-1cn |
|- 1 e. CC |
| 114 |
|
elioore |
|- ( T e. ( 0 (,) 1 ) -> T e. RR ) |
| 115 |
114
|
adantl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR ) |
| 116 |
115
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC ) |
| 117 |
|
nncan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
| 118 |
113 116 117
|
sylancr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T ) |
| 119 |
118
|
oveq1d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) ) |
| 120 |
119
|
oveq1d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
| 121 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 122 |
121 110
|
sselid |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) ) |
| 123 |
|
iirev |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
| 124 |
122 123
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
| 125 |
|
lincmb01cmp |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 126 |
2 4 5 124 125
|
syl31anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 127 |
120 126
|
eqeltrrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 128 |
|
fveq2 |
|- ( x = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) -> ( log ` x ) = ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 129 |
128
|
negeqd |
|- ( x = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) -> -u ( log ` x ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 130 |
|
eqid |
|- ( x e. ( A [,] B ) |-> -u ( log ` x ) ) = ( x e. ( A [,] B ) |-> -u ( log ` x ) ) |
| 131 |
|
negex |
|- -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) e. _V |
| 132 |
129 130 131
|
fvmpt |
|- ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 133 |
127 132
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 134 |
1
|
rpxrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* ) |
| 135 |
3
|
rpxrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* ) |
| 136 |
2 4 5
|
ltled |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B ) |
| 137 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 138 |
134 135 136 137
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) ) |
| 139 |
|
fveq2 |
|- ( x = A -> ( log ` x ) = ( log ` A ) ) |
| 140 |
139
|
negeqd |
|- ( x = A -> -u ( log ` x ) = -u ( log ` A ) ) |
| 141 |
|
negex |
|- -u ( log ` A ) e. _V |
| 142 |
140 130 141
|
fvmpt |
|- ( A e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) = -u ( log ` A ) ) |
| 143 |
138 142
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) = -u ( log ` A ) ) |
| 144 |
143
|
oveq2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) = ( T x. -u ( log ` A ) ) ) |
| 145 |
1
|
relogcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` A ) e. RR ) |
| 146 |
145
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` A ) e. CC ) |
| 147 |
116 146
|
mulneg2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. -u ( log ` A ) ) = -u ( T x. ( log ` A ) ) ) |
| 148 |
144 147
|
eqtrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) = -u ( T x. ( log ` A ) ) ) |
| 149 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 150 |
134 135 136 149
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) ) |
| 151 |
|
fveq2 |
|- ( x = B -> ( log ` x ) = ( log ` B ) ) |
| 152 |
151
|
negeqd |
|- ( x = B -> -u ( log ` x ) = -u ( log ` B ) ) |
| 153 |
|
negex |
|- -u ( log ` B ) e. _V |
| 154 |
152 130 153
|
fvmpt |
|- ( B e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) = -u ( log ` B ) ) |
| 155 |
150 154
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) = -u ( log ` B ) ) |
| 156 |
155
|
oveq2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) = ( ( 1 - T ) x. -u ( log ` B ) ) ) |
| 157 |
|
1re |
|- 1 e. RR |
| 158 |
|
resubcl |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
| 159 |
157 115 158
|
sylancr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. RR ) |
| 160 |
159
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. CC ) |
| 161 |
3
|
relogcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` B ) e. RR ) |
| 162 |
161
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` B ) e. CC ) |
| 163 |
160 162
|
mulneg2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. -u ( log ` B ) ) = -u ( ( 1 - T ) x. ( log ` B ) ) ) |
| 164 |
156 163
|
eqtrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) = -u ( ( 1 - T ) x. ( log ` B ) ) ) |
| 165 |
148 164
|
oveq12d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) = ( -u ( T x. ( log ` A ) ) + -u ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 166 |
115 145
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( log ` A ) ) e. RR ) |
| 167 |
166
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( log ` A ) ) e. CC ) |
| 168 |
159 161
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( log ` B ) ) e. RR ) |
| 169 |
168
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( log ` B ) ) e. CC ) |
| 170 |
167 169
|
negdid |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) = ( -u ( T x. ( log ` A ) ) + -u ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 171 |
165 170
|
eqtr4d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) = -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 172 |
112 133 171
|
3brtr3d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 173 |
166 168
|
readdcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) e. RR ) |
| 174 |
14 127
|
sseldd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. RR+ ) |
| 175 |
174
|
relogcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) e. RR ) |
| 176 |
173 175
|
ltnegd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) < ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) <-> -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) ) |
| 177 |
172 176
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) < ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |