Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR+ ) |
2 |
1
|
rpred |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR ) |
3 |
|
simpl2 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR+ ) |
4 |
3
|
rpred |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR ) |
5 |
|
simpl3 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B ) |
6 |
1
|
rpgt0d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> 0 < A ) |
7 |
4
|
ltpnfd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B < +oo ) |
8 |
|
0xr |
|- 0 e. RR* |
9 |
|
pnfxr |
|- +oo e. RR* |
10 |
|
iccssioo |
|- ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 < A /\ B < +oo ) ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
11 |
8 9 10
|
mpanl12 |
|- ( ( 0 < A /\ B < +oo ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
12 |
6 7 11
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
13 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
14 |
12 13
|
sseqtrdi |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR+ ) |
15 |
14
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> x e. RR+ ) |
16 |
15
|
relogcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> ( log ` x ) e. RR ) |
17 |
16
|
renegcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> -u ( log ` x ) e. RR ) |
18 |
17
|
fmpttd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) |
19 |
|
ax-resscn |
|- RR C_ CC |
20 |
14
|
resabs1d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) = ( log |` ( A [,] B ) ) ) |
21 |
|
ssid |
|- CC C_ CC |
22 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) ) |
23 |
19 21 22
|
mp2an |
|- ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) |
24 |
|
relogcn |
|- ( log |` RR+ ) e. ( RR+ -cn-> RR ) |
25 |
23 24
|
sselii |
|- ( log |` RR+ ) e. ( RR+ -cn-> CC ) |
26 |
|
rescncf |
|- ( ( A [,] B ) C_ RR+ -> ( ( log |` RR+ ) e. ( RR+ -cn-> CC ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
27 |
14 25 26
|
mpisyl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
28 |
20 27
|
eqeltrrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
29 |
|
fvres |
|- ( x e. ( A [,] B ) -> ( ( log |` ( A [,] B ) ) ` x ) = ( log ` x ) ) |
30 |
29
|
negeqd |
|- ( x e. ( A [,] B ) -> -u ( ( log |` ( A [,] B ) ) ` x ) = -u ( log ` x ) ) |
31 |
30
|
mpteq2ia |
|- ( x e. ( A [,] B ) |-> -u ( ( log |` ( A [,] B ) ) ` x ) ) = ( x e. ( A [,] B ) |-> -u ( log ` x ) ) |
32 |
31
|
eqcomi |
|- ( x e. ( A [,] B ) |-> -u ( log ` x ) ) = ( x e. ( A [,] B ) |-> -u ( ( log |` ( A [,] B ) ) ` x ) ) |
33 |
32
|
negfcncf |
|- ( ( log |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
34 |
28 33
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
35 |
|
cncffvrn |
|- ( ( RR C_ CC /\ ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) ) |
36 |
19 34 35
|
sylancr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) ) |
37 |
18 36
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
38 |
|
ioossre |
|- ( A (,) B ) C_ RR |
39 |
|
ltso |
|- < Or RR |
40 |
|
soss |
|- ( ( A (,) B ) C_ RR -> ( < Or RR -> < Or ( A (,) B ) ) ) |
41 |
38 39 40
|
mp2 |
|- < Or ( A (,) B ) |
42 |
41
|
a1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Or ( A (,) B ) ) |
43 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
44 |
43 14
|
sstrid |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR+ ) |
45 |
44
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> x e. RR+ ) |
46 |
45
|
rprecred |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> ( 1 / x ) e. RR ) |
47 |
46
|
renegcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> -u ( 1 / x ) e. RR ) |
48 |
47
|
fmpttd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) --> RR ) |
49 |
48
|
frnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) C_ RR ) |
50 |
|
soss |
|- ( ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) C_ RR -> ( < Or RR -> < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
51 |
49 39 50
|
mpisyl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
52 |
|
sopo |
|- ( < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) -> < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
53 |
51 52
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
54 |
|
negex |
|- -u ( 1 / x ) e. _V |
55 |
|
eqid |
|- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) |
56 |
54 55
|
fnmpti |
|- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Fn ( A (,) B ) |
57 |
|
dffn4 |
|- ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Fn ( A (,) B ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
58 |
56 57
|
mpbi |
|- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) |
59 |
58
|
a1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
60 |
44
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ z e. ( A (,) B ) ) -> z e. RR+ ) |
61 |
60
|
adantrl |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> z e. RR+ ) |
62 |
61
|
rprecred |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( 1 / z ) e. RR ) |
63 |
44
|
sselda |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ y e. ( A (,) B ) ) -> y e. RR+ ) |
64 |
63
|
adantrr |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> y e. RR+ ) |
65 |
64
|
rprecred |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( 1 / y ) e. RR ) |
66 |
62 65
|
ltnegd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( ( 1 / z ) < ( 1 / y ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
67 |
64 61
|
ltrecd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z <-> ( 1 / z ) < ( 1 / y ) ) ) |
68 |
|
oveq2 |
|- ( x = y -> ( 1 / x ) = ( 1 / y ) ) |
69 |
68
|
negeqd |
|- ( x = y -> -u ( 1 / x ) = -u ( 1 / y ) ) |
70 |
|
negex |
|- -u ( 1 / y ) e. _V |
71 |
69 55 70
|
fvmpt |
|- ( y e. ( A (,) B ) -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) = -u ( 1 / y ) ) |
72 |
|
oveq2 |
|- ( x = z -> ( 1 / x ) = ( 1 / z ) ) |
73 |
72
|
negeqd |
|- ( x = z -> -u ( 1 / x ) = -u ( 1 / z ) ) |
74 |
|
negex |
|- -u ( 1 / z ) e. _V |
75 |
73 55 74
|
fvmpt |
|- ( z e. ( A (,) B ) -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) = -u ( 1 / z ) ) |
76 |
71 75
|
breqan12d |
|- ( ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) -> ( ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
77 |
76
|
adantl |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
78 |
66 67 77
|
3bitr4d |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z <-> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
79 |
78
|
biimpd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
80 |
79
|
ralrimivva |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A. y e. ( A (,) B ) A. z e. ( A (,) B ) ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
81 |
|
soisoi |
|- ( ( ( < Or ( A (,) B ) /\ < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) /\ ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) /\ A. y e. ( A (,) B ) A. z e. ( A (,) B ) ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
82 |
42 53 59 80 81
|
syl22anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
83 |
|
reelprrecn |
|- RR e. { RR , CC } |
84 |
83
|
a1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> RR e. { RR , CC } ) |
85 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
86 |
85
|
adantl |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
87 |
86
|
recnd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
88 |
87
|
negcld |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> -u ( log ` x ) e. CC ) |
89 |
54
|
a1i |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> -u ( 1 / x ) e. _V ) |
90 |
|
ovexd |
|- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( 1 / x ) e. _V ) |
91 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
92 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
93 |
91 92
|
mp1i |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) : RR+ --> RR ) |
94 |
93
|
feqmptd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
95 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
96 |
95
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
97 |
94 96
|
eqtrdi |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
98 |
97
|
oveq2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
99 |
|
dvrelog |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
100 |
98 99
|
eqtr3di |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
101 |
84 87 90 100
|
dvmptneg |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. RR+ |-> -u ( log ` x ) ) ) = ( x e. RR+ |-> -u ( 1 / x ) ) ) |
102 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
103 |
102
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
104 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
105 |
2 4 104
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
106 |
84 88 89 101 14 103 102 105
|
dvmptres2 |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
107 |
|
isoeq1 |
|- ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) -> ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) ) |
108 |
106 107
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) ) |
109 |
82 108
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
110 |
|
simpr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) ) |
111 |
|
eqid |
|- ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
112 |
2 4 5 37 109 110 111
|
dvcvx |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) ) |
113 |
|
ax-1cn |
|- 1 e. CC |
114 |
|
elioore |
|- ( T e. ( 0 (,) 1 ) -> T e. RR ) |
115 |
114
|
adantl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR ) |
116 |
115
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC ) |
117 |
|
nncan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
118 |
113 116 117
|
sylancr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T ) |
119 |
118
|
oveq1d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) ) |
120 |
119
|
oveq1d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
121 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
122 |
121 110
|
sselid |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) ) |
123 |
|
iirev |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
124 |
122 123
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
125 |
|
lincmb01cmp |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
126 |
2 4 5 124 125
|
syl31anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
127 |
120 126
|
eqeltrrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
128 |
|
fveq2 |
|- ( x = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) -> ( log ` x ) = ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
129 |
128
|
negeqd |
|- ( x = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) -> -u ( log ` x ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
130 |
|
eqid |
|- ( x e. ( A [,] B ) |-> -u ( log ` x ) ) = ( x e. ( A [,] B ) |-> -u ( log ` x ) ) |
131 |
|
negex |
|- -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) e. _V |
132 |
129 130 131
|
fvmpt |
|- ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
133 |
127 132
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
134 |
1
|
rpxrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* ) |
135 |
3
|
rpxrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* ) |
136 |
2 4 5
|
ltled |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B ) |
137 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
138 |
134 135 136 137
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) ) |
139 |
|
fveq2 |
|- ( x = A -> ( log ` x ) = ( log ` A ) ) |
140 |
139
|
negeqd |
|- ( x = A -> -u ( log ` x ) = -u ( log ` A ) ) |
141 |
|
negex |
|- -u ( log ` A ) e. _V |
142 |
140 130 141
|
fvmpt |
|- ( A e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) = -u ( log ` A ) ) |
143 |
138 142
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) = -u ( log ` A ) ) |
144 |
143
|
oveq2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) = ( T x. -u ( log ` A ) ) ) |
145 |
1
|
relogcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` A ) e. RR ) |
146 |
145
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` A ) e. CC ) |
147 |
116 146
|
mulneg2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. -u ( log ` A ) ) = -u ( T x. ( log ` A ) ) ) |
148 |
144 147
|
eqtrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) = -u ( T x. ( log ` A ) ) ) |
149 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
150 |
134 135 136 149
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) ) |
151 |
|
fveq2 |
|- ( x = B -> ( log ` x ) = ( log ` B ) ) |
152 |
151
|
negeqd |
|- ( x = B -> -u ( log ` x ) = -u ( log ` B ) ) |
153 |
|
negex |
|- -u ( log ` B ) e. _V |
154 |
152 130 153
|
fvmpt |
|- ( B e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) = -u ( log ` B ) ) |
155 |
150 154
|
syl |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) = -u ( log ` B ) ) |
156 |
155
|
oveq2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) = ( ( 1 - T ) x. -u ( log ` B ) ) ) |
157 |
|
1re |
|- 1 e. RR |
158 |
|
resubcl |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
159 |
157 115 158
|
sylancr |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. RR ) |
160 |
159
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. CC ) |
161 |
3
|
relogcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` B ) e. RR ) |
162 |
161
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` B ) e. CC ) |
163 |
160 162
|
mulneg2d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. -u ( log ` B ) ) = -u ( ( 1 - T ) x. ( log ` B ) ) ) |
164 |
156 163
|
eqtrd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) = -u ( ( 1 - T ) x. ( log ` B ) ) ) |
165 |
148 164
|
oveq12d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) = ( -u ( T x. ( log ` A ) ) + -u ( ( 1 - T ) x. ( log ` B ) ) ) ) |
166 |
115 145
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( log ` A ) ) e. RR ) |
167 |
166
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( log ` A ) ) e. CC ) |
168 |
159 161
|
remulcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( log ` B ) ) e. RR ) |
169 |
168
|
recnd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( log ` B ) ) e. CC ) |
170 |
167 169
|
negdid |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) = ( -u ( T x. ( log ` A ) ) + -u ( ( 1 - T ) x. ( log ` B ) ) ) ) |
171 |
165 170
|
eqtr4d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) = -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) |
172 |
112 133 171
|
3brtr3d |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) |
173 |
166 168
|
readdcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) e. RR ) |
174 |
14 127
|
sseldd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. RR+ ) |
175 |
174
|
relogcld |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) e. RR ) |
176 |
173 175
|
ltnegd |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) < ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) <-> -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) ) |
177 |
172 176
|
mpbird |
|- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) < ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |