Metamath Proof Explorer


Theorem logccv

Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion logccv A + B + A < B T 0 1 T log A + 1 T log B < log T A + 1 T B

Proof

Step Hyp Ref Expression
1 simpl1 A + B + A < B T 0 1 A +
2 1 rpred A + B + A < B T 0 1 A
3 simpl2 A + B + A < B T 0 1 B +
4 3 rpred A + B + A < B T 0 1 B
5 simpl3 A + B + A < B T 0 1 A < B
6 1 rpgt0d A + B + A < B T 0 1 0 < A
7 4 ltpnfd A + B + A < B T 0 1 B < +∞
8 0xr 0 *
9 pnfxr +∞ *
10 iccssioo 0 * +∞ * 0 < A B < +∞ A B 0 +∞
11 8 9 10 mpanl12 0 < A B < +∞ A B 0 +∞
12 6 7 11 syl2anc A + B + A < B T 0 1 A B 0 +∞
13 ioorp 0 +∞ = +
14 12 13 sseqtrdi A + B + A < B T 0 1 A B +
15 14 sselda A + B + A < B T 0 1 x A B x +
16 15 relogcld A + B + A < B T 0 1 x A B log x
17 16 renegcld A + B + A < B T 0 1 x A B log x
18 17 fmpttd A + B + A < B T 0 1 x A B log x : A B
19 ax-resscn
20 14 resabs1d A + B + A < B T 0 1 log + A B = log A B
21 ssid
22 cncfss + cn + cn
23 19 21 22 mp2an + cn + cn
24 relogcn log + : + cn
25 23 24 sselii log + : + cn
26 rescncf A B + log + : + cn log + A B : A B cn
27 14 25 26 mpisyl A + B + A < B T 0 1 log + A B : A B cn
28 20 27 eqeltrrd A + B + A < B T 0 1 log A B : A B cn
29 fvres x A B log A B x = log x
30 29 negeqd x A B log A B x = log x
31 30 mpteq2ia x A B log A B x = x A B log x
32 31 eqcomi x A B log x = x A B log A B x
33 32 negfcncf log A B : A B cn x A B log x : A B cn
34 28 33 syl A + B + A < B T 0 1 x A B log x : A B cn
35 cncffvrn x A B log x : A B cn x A B log x : A B cn x A B log x : A B
36 19 34 35 sylancr A + B + A < B T 0 1 x A B log x : A B cn x A B log x : A B
37 18 36 mpbird A + B + A < B T 0 1 x A B log x : A B cn
38 ioossre A B
39 ltso < Or
40 soss A B < Or < Or A B
41 38 39 40 mp2 < Or A B
42 41 a1i A + B + A < B T 0 1 < Or A B
43 ioossicc A B A B
44 43 14 sstrid A + B + A < B T 0 1 A B +
45 44 sselda A + B + A < B T 0 1 x A B x +
46 45 rprecred A + B + A < B T 0 1 x A B 1 x
47 46 renegcld A + B + A < B T 0 1 x A B 1 x
48 47 fmpttd A + B + A < B T 0 1 x A B 1 x : A B
49 48 frnd A + B + A < B T 0 1 ran x A B 1 x
50 soss ran x A B 1 x < Or < Or ran x A B 1 x
51 49 39 50 mpisyl A + B + A < B T 0 1 < Or ran x A B 1 x
52 sopo < Or ran x A B 1 x < Po ran x A B 1 x
53 51 52 syl A + B + A < B T 0 1 < Po ran x A B 1 x
54 negex 1 x V
55 eqid x A B 1 x = x A B 1 x
56 54 55 fnmpti x A B 1 x Fn A B
57 dffn4 x A B 1 x Fn A B x A B 1 x : A B onto ran x A B 1 x
58 56 57 mpbi x A B 1 x : A B onto ran x A B 1 x
59 58 a1i A + B + A < B T 0 1 x A B 1 x : A B onto ran x A B 1 x
60 44 sselda A + B + A < B T 0 1 z A B z +
61 60 adantrl A + B + A < B T 0 1 y A B z A B z +
62 61 rprecred A + B + A < B T 0 1 y A B z A B 1 z
63 44 sselda A + B + A < B T 0 1 y A B y +
64 63 adantrr A + B + A < B T 0 1 y A B z A B y +
65 64 rprecred A + B + A < B T 0 1 y A B z A B 1 y
66 62 65 ltnegd A + B + A < B T 0 1 y A B z A B 1 z < 1 y 1 y < 1 z
67 64 61 ltrecd A + B + A < B T 0 1 y A B z A B y < z 1 z < 1 y
68 oveq2 x = y 1 x = 1 y
69 68 negeqd x = y 1 x = 1 y
70 negex 1 y V
71 69 55 70 fvmpt y A B x A B 1 x y = 1 y
72 oveq2 x = z 1 x = 1 z
73 72 negeqd x = z 1 x = 1 z
74 negex 1 z V
75 73 55 74 fvmpt z A B x A B 1 x z = 1 z
76 71 75 breqan12d y A B z A B x A B 1 x y < x A B 1 x z 1 y < 1 z
77 76 adantl A + B + A < B T 0 1 y A B z A B x A B 1 x y < x A B 1 x z 1 y < 1 z
78 66 67 77 3bitr4d A + B + A < B T 0 1 y A B z A B y < z x A B 1 x y < x A B 1 x z
79 78 biimpd A + B + A < B T 0 1 y A B z A B y < z x A B 1 x y < x A B 1 x z
80 79 ralrimivva A + B + A < B T 0 1 y A B z A B y < z x A B 1 x y < x A B 1 x z
81 soisoi < Or A B < Po ran x A B 1 x x A B 1 x : A B onto ran x A B 1 x y A B z A B y < z x A B 1 x y < x A B 1 x z x A B 1 x Isom < , < A B ran x A B 1 x
82 42 53 59 80 81 syl22anc A + B + A < B T 0 1 x A B 1 x Isom < , < A B ran x A B 1 x
83 reelprrecn
84 83 a1i A + B + A < B T 0 1
85 relogcl x + log x
86 85 adantl A + B + A < B T 0 1 x + log x
87 86 recnd A + B + A < B T 0 1 x + log x
88 87 negcld A + B + A < B T 0 1 x + log x
89 54 a1i A + B + A < B T 0 1 x + 1 x V
90 ovexd A + B + A < B T 0 1 x + 1 x V
91 dvrelog D log + = x + 1 x
92 relogf1o log + : + 1-1 onto
93 f1of log + : + 1-1 onto log + : +
94 92 93 mp1i A + B + A < B T 0 1 log + : +
95 94 feqmptd A + B + A < B T 0 1 log + = x + log + x
96 fvres x + log + x = log x
97 96 mpteq2ia x + log + x = x + log x
98 95 97 eqtrdi A + B + A < B T 0 1 log + = x + log x
99 98 oveq2d A + B + A < B T 0 1 D log + = dx + log x d x
100 91 99 syl5reqr A + B + A < B T 0 1 dx + log x d x = x + 1 x
101 84 87 90 100 dvmptneg A + B + A < B T 0 1 dx + log x d x = x + 1 x
102 eqid TopOpen fld = TopOpen fld
103 102 tgioo2 topGen ran . = TopOpen fld 𝑡
104 iccntr A B int topGen ran . A B = A B
105 2 4 104 syl2anc A + B + A < B T 0 1 int topGen ran . A B = A B
106 84 88 89 101 14 103 102 105 dvmptres2 A + B + A < B T 0 1 dx A B log x d x = x A B 1 x
107 isoeq1 dx A B log x d x = x A B 1 x dx A B log x d x Isom < , < A B ran x A B 1 x x A B 1 x Isom < , < A B ran x A B 1 x
108 106 107 syl A + B + A < B T 0 1 dx A B log x d x Isom < , < A B ran x A B 1 x x A B 1 x Isom < , < A B ran x A B 1 x
109 82 108 mpbird A + B + A < B T 0 1 dx A B log x d x Isom < , < A B ran x A B 1 x
110 simpr A + B + A < B T 0 1 T 0 1
111 eqid T A + 1 T B = T A + 1 T B
112 2 4 5 37 109 110 111 dvcvx A + B + A < B T 0 1 x A B log x T A + 1 T B < T x A B log x A + 1 T x A B log x B
113 ax-1cn 1
114 elioore T 0 1 T
115 114 adantl A + B + A < B T 0 1 T
116 115 recnd A + B + A < B T 0 1 T
117 nncan 1 T 1 1 T = T
118 113 116 117 sylancr A + B + A < B T 0 1 1 1 T = T
119 118 oveq1d A + B + A < B T 0 1 1 1 T A = T A
120 119 oveq1d A + B + A < B T 0 1 1 1 T A + 1 T B = T A + 1 T B
121 ioossicc 0 1 0 1
122 121 110 sseldi A + B + A < B T 0 1 T 0 1
123 iirev T 0 1 1 T 0 1
124 122 123 syl A + B + A < B T 0 1 1 T 0 1
125 lincmb01cmp A B A < B 1 T 0 1 1 1 T A + 1 T B A B
126 2 4 5 124 125 syl31anc A + B + A < B T 0 1 1 1 T A + 1 T B A B
127 120 126 eqeltrrd A + B + A < B T 0 1 T A + 1 T B A B
128 fveq2 x = T A + 1 T B log x = log T A + 1 T B
129 128 negeqd x = T A + 1 T B log x = log T A + 1 T B
130 eqid x A B log x = x A B log x
131 negex log T A + 1 T B V
132 129 130 131 fvmpt T A + 1 T B A B x A B log x T A + 1 T B = log T A + 1 T B
133 127 132 syl A + B + A < B T 0 1 x A B log x T A + 1 T B = log T A + 1 T B
134 1 rpxrd A + B + A < B T 0 1 A *
135 3 rpxrd A + B + A < B T 0 1 B *
136 2 4 5 ltled A + B + A < B T 0 1 A B
137 lbicc2 A * B * A B A A B
138 134 135 136 137 syl3anc A + B + A < B T 0 1 A A B
139 fveq2 x = A log x = log A
140 139 negeqd x = A log x = log A
141 negex log A V
142 140 130 141 fvmpt A A B x A B log x A = log A
143 138 142 syl A + B + A < B T 0 1 x A B log x A = log A
144 143 oveq2d A + B + A < B T 0 1 T x A B log x A = T log A
145 1 relogcld A + B + A < B T 0 1 log A
146 145 recnd A + B + A < B T 0 1 log A
147 116 146 mulneg2d A + B + A < B T 0 1 T log A = T log A
148 144 147 eqtrd A + B + A < B T 0 1 T x A B log x A = T log A
149 ubicc2 A * B * A B B A B
150 134 135 136 149 syl3anc A + B + A < B T 0 1 B A B
151 fveq2 x = B log x = log B
152 151 negeqd x = B log x = log B
153 negex log B V
154 152 130 153 fvmpt B A B x A B log x B = log B
155 150 154 syl A + B + A < B T 0 1 x A B log x B = log B
156 155 oveq2d A + B + A < B T 0 1 1 T x A B log x B = 1 T log B
157 1re 1
158 resubcl 1 T 1 T
159 157 115 158 sylancr A + B + A < B T 0 1 1 T
160 159 recnd A + B + A < B T 0 1 1 T
161 3 relogcld A + B + A < B T 0 1 log B
162 161 recnd A + B + A < B T 0 1 log B
163 160 162 mulneg2d A + B + A < B T 0 1 1 T log B = 1 T log B
164 156 163 eqtrd A + B + A < B T 0 1 1 T x A B log x B = 1 T log B
165 148 164 oveq12d A + B + A < B T 0 1 T x A B log x A + 1 T x A B log x B = - T log A + 1 T log B
166 115 145 remulcld A + B + A < B T 0 1 T log A
167 166 recnd A + B + A < B T 0 1 T log A
168 159 161 remulcld A + B + A < B T 0 1 1 T log B
169 168 recnd A + B + A < B T 0 1 1 T log B
170 167 169 negdid A + B + A < B T 0 1 T log A + 1 T log B = - T log A + 1 T log B
171 165 170 eqtr4d A + B + A < B T 0 1 T x A B log x A + 1 T x A B log x B = T log A + 1 T log B
172 112 133 171 3brtr3d A + B + A < B T 0 1 log T A + 1 T B < T log A + 1 T log B
173 166 168 readdcld A + B + A < B T 0 1 T log A + 1 T log B
174 14 127 sseldd A + B + A < B T 0 1 T A + 1 T B +
175 174 relogcld A + B + A < B T 0 1 log T A + 1 T B
176 173 175 ltnegd A + B + A < B T 0 1 T log A + 1 T log B < log T A + 1 T B log T A + 1 T B < T log A + 1 T log B
177 172 176 mpbird A + B + A < B T 0 1 T log A + 1 T log B < log T A + 1 T B