Metamath Proof Explorer


Theorem logccv

Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion logccv A+B+A<BT01TlogA+1TlogB<logTA+1TB

Proof

Step Hyp Ref Expression
1 simpl1 A+B+A<BT01A+
2 1 rpred A+B+A<BT01A
3 simpl2 A+B+A<BT01B+
4 3 rpred A+B+A<BT01B
5 simpl3 A+B+A<BT01A<B
6 1 rpgt0d A+B+A<BT010<A
7 4 ltpnfd A+B+A<BT01B<+∞
8 0xr 0*
9 pnfxr +∞*
10 iccssioo 0*+∞*0<AB<+∞AB0+∞
11 8 9 10 mpanl12 0<AB<+∞AB0+∞
12 6 7 11 syl2anc A+B+A<BT01AB0+∞
13 ioorp 0+∞=+
14 12 13 sseqtrdi A+B+A<BT01AB+
15 14 sselda A+B+A<BT01xABx+
16 15 relogcld A+B+A<BT01xABlogx
17 16 renegcld A+B+A<BT01xABlogx
18 17 fmpttd A+B+A<BT01xABlogx:AB
19 ax-resscn
20 14 resabs1d A+B+A<BT01log+AB=logAB
21 ssid
22 cncfss +cn+cn
23 19 21 22 mp2an +cn+cn
24 relogcn log+:+cn
25 23 24 sselii log+:+cn
26 rescncf AB+log+:+cnlog+AB:ABcn
27 14 25 26 mpisyl A+B+A<BT01log+AB:ABcn
28 20 27 eqeltrrd A+B+A<BT01logAB:ABcn
29 fvres xABlogABx=logx
30 29 negeqd xABlogABx=logx
31 30 mpteq2ia xABlogABx=xABlogx
32 31 eqcomi xABlogx=xABlogABx
33 32 negfcncf logAB:ABcnxABlogx:ABcn
34 28 33 syl A+B+A<BT01xABlogx:ABcn
35 cncfcdm xABlogx:ABcnxABlogx:ABcnxABlogx:AB
36 19 34 35 sylancr A+B+A<BT01xABlogx:ABcnxABlogx:AB
37 18 36 mpbird A+B+A<BT01xABlogx:ABcn
38 ioossre AB
39 ltso <Or
40 soss AB<Or<OrAB
41 38 39 40 mp2 <OrAB
42 41 a1i A+B+A<BT01<OrAB
43 ioossicc ABAB
44 43 14 sstrid A+B+A<BT01AB+
45 44 sselda A+B+A<BT01xABx+
46 45 rprecred A+B+A<BT01xAB1x
47 46 renegcld A+B+A<BT01xAB1x
48 47 fmpttd A+B+A<BT01xAB1x:AB
49 48 frnd A+B+A<BT01ranxAB1x
50 soss ranxAB1x<Or<OrranxAB1x
51 49 39 50 mpisyl A+B+A<BT01<OrranxAB1x
52 sopo <OrranxAB1x<PoranxAB1x
53 51 52 syl A+B+A<BT01<PoranxAB1x
54 negex 1xV
55 eqid xAB1x=xAB1x
56 54 55 fnmpti xAB1xFnAB
57 dffn4 xAB1xFnABxAB1x:ABontoranxAB1x
58 56 57 mpbi xAB1x:ABontoranxAB1x
59 58 a1i A+B+A<BT01xAB1x:ABontoranxAB1x
60 44 sselda A+B+A<BT01zABz+
61 60 adantrl A+B+A<BT01yABzABz+
62 61 rprecred A+B+A<BT01yABzAB1z
63 44 sselda A+B+A<BT01yABy+
64 63 adantrr A+B+A<BT01yABzABy+
65 64 rprecred A+B+A<BT01yABzAB1y
66 62 65 ltnegd A+B+A<BT01yABzAB1z<1y1y<1z
67 64 61 ltrecd A+B+A<BT01yABzABy<z1z<1y
68 oveq2 x=y1x=1y
69 68 negeqd x=y1x=1y
70 negex 1yV
71 69 55 70 fvmpt yABxAB1xy=1y
72 oveq2 x=z1x=1z
73 72 negeqd x=z1x=1z
74 negex 1zV
75 73 55 74 fvmpt zABxAB1xz=1z
76 71 75 breqan12d yABzABxAB1xy<xAB1xz1y<1z
77 76 adantl A+B+A<BT01yABzABxAB1xy<xAB1xz1y<1z
78 66 67 77 3bitr4d A+B+A<BT01yABzABy<zxAB1xy<xAB1xz
79 78 biimpd A+B+A<BT01yABzABy<zxAB1xy<xAB1xz
80 79 ralrimivva A+B+A<BT01yABzABy<zxAB1xy<xAB1xz
81 soisoi <OrAB<PoranxAB1xxAB1x:ABontoranxAB1xyABzABy<zxAB1xy<xAB1xzxAB1xIsom<,<ABranxAB1x
82 42 53 59 80 81 syl22anc A+B+A<BT01xAB1xIsom<,<ABranxAB1x
83 reelprrecn
84 83 a1i A+B+A<BT01
85 relogcl x+logx
86 85 adantl A+B+A<BT01x+logx
87 86 recnd A+B+A<BT01x+logx
88 87 negcld A+B+A<BT01x+logx
89 54 a1i A+B+A<BT01x+1xV
90 ovexd A+B+A<BT01x+1xV
91 relogf1o log+:+1-1 onto
92 f1of log+:+1-1 ontolog+:+
93 91 92 mp1i A+B+A<BT01log+:+
94 93 feqmptd A+B+A<BT01log+=x+log+x
95 fvres x+log+x=logx
96 95 mpteq2ia x+log+x=x+logx
97 94 96 eqtrdi A+B+A<BT01log+=x+logx
98 97 oveq2d A+B+A<BT01Dlog+=dx+logxdx
99 dvrelog Dlog+=x+1x
100 98 99 eqtr3di A+B+A<BT01dx+logxdx=x+1x
101 84 87 90 100 dvmptneg A+B+A<BT01dx+logxdx=x+1x
102 eqid TopOpenfld=TopOpenfld
103 102 tgioo2 topGenran.=TopOpenfld𝑡
104 iccntr ABinttopGenran.AB=AB
105 2 4 104 syl2anc A+B+A<BT01inttopGenran.AB=AB
106 84 88 89 101 14 103 102 105 dvmptres2 A+B+A<BT01dxABlogxdx=xAB1x
107 isoeq1 dxABlogxdx=xAB1xdxABlogxdxIsom<,<ABranxAB1xxAB1xIsom<,<ABranxAB1x
108 106 107 syl A+B+A<BT01dxABlogxdxIsom<,<ABranxAB1xxAB1xIsom<,<ABranxAB1x
109 82 108 mpbird A+B+A<BT01dxABlogxdxIsom<,<ABranxAB1x
110 simpr A+B+A<BT01T01
111 eqid TA+1TB=TA+1TB
112 2 4 5 37 109 110 111 dvcvx A+B+A<BT01xABlogxTA+1TB<TxABlogxA+1TxABlogxB
113 ax-1cn 1
114 elioore T01T
115 114 adantl A+B+A<BT01T
116 115 recnd A+B+A<BT01T
117 nncan 1T11T=T
118 113 116 117 sylancr A+B+A<BT0111T=T
119 118 oveq1d A+B+A<BT0111TA=TA
120 119 oveq1d A+B+A<BT0111TA+1TB=TA+1TB
121 ioossicc 0101
122 121 110 sselid A+B+A<BT01T01
123 iirev T011T01
124 122 123 syl A+B+A<BT011T01
125 lincmb01cmp ABA<B1T0111TA+1TBAB
126 2 4 5 124 125 syl31anc A+B+A<BT0111TA+1TBAB
127 120 126 eqeltrrd A+B+A<BT01TA+1TBAB
128 fveq2 x=TA+1TBlogx=logTA+1TB
129 128 negeqd x=TA+1TBlogx=logTA+1TB
130 eqid xABlogx=xABlogx
131 negex logTA+1TBV
132 129 130 131 fvmpt TA+1TBABxABlogxTA+1TB=logTA+1TB
133 127 132 syl A+B+A<BT01xABlogxTA+1TB=logTA+1TB
134 1 rpxrd A+B+A<BT01A*
135 3 rpxrd A+B+A<BT01B*
136 2 4 5 ltled A+B+A<BT01AB
137 lbicc2 A*B*ABAAB
138 134 135 136 137 syl3anc A+B+A<BT01AAB
139 fveq2 x=Alogx=logA
140 139 negeqd x=Alogx=logA
141 negex logAV
142 140 130 141 fvmpt AABxABlogxA=logA
143 138 142 syl A+B+A<BT01xABlogxA=logA
144 143 oveq2d A+B+A<BT01TxABlogxA=TlogA
145 1 relogcld A+B+A<BT01logA
146 145 recnd A+B+A<BT01logA
147 116 146 mulneg2d A+B+A<BT01TlogA=TlogA
148 144 147 eqtrd A+B+A<BT01TxABlogxA=TlogA
149 ubicc2 A*B*ABBAB
150 134 135 136 149 syl3anc A+B+A<BT01BAB
151 fveq2 x=Blogx=logB
152 151 negeqd x=Blogx=logB
153 negex logBV
154 152 130 153 fvmpt BABxABlogxB=logB
155 150 154 syl A+B+A<BT01xABlogxB=logB
156 155 oveq2d A+B+A<BT011TxABlogxB=1TlogB
157 1re 1
158 resubcl 1T1T
159 157 115 158 sylancr A+B+A<BT011T
160 159 recnd A+B+A<BT011T
161 3 relogcld A+B+A<BT01logB
162 161 recnd A+B+A<BT01logB
163 160 162 mulneg2d A+B+A<BT011TlogB=1TlogB
164 156 163 eqtrd A+B+A<BT011TxABlogxB=1TlogB
165 148 164 oveq12d A+B+A<BT01TxABlogxA+1TxABlogxB=-TlogA+1TlogB
166 115 145 remulcld A+B+A<BT01TlogA
167 166 recnd A+B+A<BT01TlogA
168 159 161 remulcld A+B+A<BT011TlogB
169 168 recnd A+B+A<BT011TlogB
170 167 169 negdid A+B+A<BT01TlogA+1TlogB=-TlogA+1TlogB
171 165 170 eqtr4d A+B+A<BT01TxABlogxA+1TxABlogxB=TlogA+1TlogB
172 112 133 171 3brtr3d A+B+A<BT01logTA+1TB<TlogA+1TlogB
173 166 168 readdcld A+B+A<BT01TlogA+1TlogB
174 14 127 sseldd A+B+A<BT01TA+1TB+
175 174 relogcld A+B+A<BT01logTA+1TB
176 173 175 ltnegd A+B+A<BT01TlogA+1TlogB<logTA+1TBlogTA+1TB<TlogA+1TlogB
177 172 176 mpbird A+B+A<BT01TlogA+1TlogB<logTA+1TB