| Step |
Hyp |
Ref |
Expression |
| 1 |
|
amgm.1 |
|- M = ( mulGrp ` CCfld ) |
| 2 |
|
amgm.2 |
|- ( ph -> A e. Fin ) |
| 3 |
|
amgm.3 |
|- ( ph -> A =/= (/) ) |
| 4 |
|
amgm.4 |
|- ( ph -> F : A --> RR+ ) |
| 5 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 6 |
|
cnring |
|- CCfld e. Ring |
| 7 |
|
ringabl |
|- ( CCfld e. Ring -> CCfld e. Abel ) |
| 8 |
6 7
|
mp1i |
|- ( ph -> CCfld e. Abel ) |
| 9 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 10 |
9
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 11 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
| 12 |
10 11
|
mp1i |
|- ( ph -> RR e. ( SubGrp ` CCfld ) ) |
| 13 |
4
|
ffvelcdmda |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. RR+ ) |
| 14 |
13
|
relogcld |
|- ( ( ph /\ k e. A ) -> ( log ` ( F ` k ) ) e. RR ) |
| 15 |
14
|
renegcld |
|- ( ( ph /\ k e. A ) -> -u ( log ` ( F ` k ) ) e. RR ) |
| 16 |
15
|
fmpttd |
|- ( ph -> ( k e. A |-> -u ( log ` ( F ` k ) ) ) : A --> RR ) |
| 17 |
|
c0ex |
|- 0 e. _V |
| 18 |
17
|
a1i |
|- ( ph -> 0 e. _V ) |
| 19 |
16 2 18
|
fdmfifsupp |
|- ( ph -> ( k e. A |-> -u ( log ` ( F ` k ) ) ) finSupp 0 ) |
| 20 |
5 8 2 12 16 19
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ph -> ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) e. CC ) |
| 22 |
|
hashnncl |
|- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
| 23 |
2 22
|
syl |
|- ( ph -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
| 24 |
3 23
|
mpbird |
|- ( ph -> ( # ` A ) e. NN ) |
| 25 |
24
|
nncnd |
|- ( ph -> ( # ` A ) e. CC ) |
| 26 |
24
|
nnne0d |
|- ( ph -> ( # ` A ) =/= 0 ) |
| 27 |
21 25 26
|
divnegd |
|- ( ph -> -u ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
| 28 |
14
|
recnd |
|- ( ( ph /\ k e. A ) -> ( log ` ( F ` k ) ) e. CC ) |
| 29 |
2 28
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( log ` ( F ` k ) ) ) ) = sum_ k e. A ( log ` ( F ` k ) ) ) |
| 30 |
28
|
negnegd |
|- ( ( ph /\ k e. A ) -> -u -u ( log ` ( F ` k ) ) = ( log ` ( F ` k ) ) ) |
| 31 |
30
|
sumeq2dv |
|- ( ph -> sum_ k e. A -u -u ( log ` ( F ` k ) ) = sum_ k e. A ( log ` ( F ` k ) ) ) |
| 32 |
15
|
recnd |
|- ( ( ph /\ k e. A ) -> -u ( log ` ( F ` k ) ) e. CC ) |
| 33 |
2 32
|
fsumneg |
|- ( ph -> sum_ k e. A -u -u ( log ` ( F ` k ) ) = -u sum_ k e. A -u ( log ` ( F ` k ) ) ) |
| 34 |
29 31 33
|
3eqtr2rd |
|- ( ph -> -u sum_ k e. A -u ( log ` ( F ` k ) ) = ( CCfld gsum ( k e. A |-> ( log ` ( F ` k ) ) ) ) ) |
| 35 |
2 32
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = sum_ k e. A -u ( log ` ( F ` k ) ) ) |
| 36 |
35
|
negeqd |
|- ( ph -> -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = -u sum_ k e. A -u ( log ` ( F ` k ) ) ) |
| 37 |
4
|
feqmptd |
|- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 38 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
| 39 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
| 40 |
38 39
|
mp1i |
|- ( ph -> ( log |` RR+ ) : RR+ --> RR ) |
| 41 |
40
|
feqmptd |
|- ( ph -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
| 42 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
| 43 |
42
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| 44 |
41 43
|
eqtrdi |
|- ( ph -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 45 |
|
fveq2 |
|- ( x = ( F ` k ) -> ( log ` x ) = ( log ` ( F ` k ) ) ) |
| 46 |
13 37 44 45
|
fmptco |
|- ( ph -> ( ( log |` RR+ ) o. F ) = ( k e. A |-> ( log ` ( F ` k ) ) ) ) |
| 47 |
46
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( log |` RR+ ) o. F ) ) = ( CCfld gsum ( k e. A |-> ( log ` ( F ` k ) ) ) ) ) |
| 48 |
34 36 47
|
3eqtr4d |
|- ( ph -> -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = ( CCfld gsum ( ( log |` RR+ ) o. F ) ) ) |
| 49 |
1
|
oveq1i |
|- ( M |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
| 50 |
49
|
rpmsubg |
|- RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) |
| 51 |
|
subgsubm |
|- ( RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) -> RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) ) |
| 52 |
50 51
|
ax-mp |
|- RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) |
| 53 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 54 |
|
cndrng |
|- CCfld e. DivRing |
| 55 |
53 5 54
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 56 |
55 1
|
unitsubm |
|- ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` M ) ) |
| 57 |
|
eqid |
|- ( M |`s ( CC \ { 0 } ) ) = ( M |`s ( CC \ { 0 } ) ) |
| 58 |
57
|
subsubm |
|- ( ( CC \ { 0 } ) e. ( SubMnd ` M ) -> ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) ) |
| 59 |
6 56 58
|
mp2b |
|- ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) |
| 60 |
52 59
|
mpbi |
|- ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) |
| 61 |
60
|
simpli |
|- RR+ e. ( SubMnd ` M ) |
| 62 |
|
eqid |
|- ( M |`s RR+ ) = ( M |`s RR+ ) |
| 63 |
62
|
submbas |
|- ( RR+ e. ( SubMnd ` M ) -> RR+ = ( Base ` ( M |`s RR+ ) ) ) |
| 64 |
61 63
|
ax-mp |
|- RR+ = ( Base ` ( M |`s RR+ ) ) |
| 65 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 66 |
1 65
|
ringidval |
|- 1 = ( 0g ` M ) |
| 67 |
62 66
|
subm0 |
|- ( RR+ e. ( SubMnd ` M ) -> 1 = ( 0g ` ( M |`s RR+ ) ) ) |
| 68 |
61 67
|
ax-mp |
|- 1 = ( 0g ` ( M |`s RR+ ) ) |
| 69 |
|
cncrng |
|- CCfld e. CRing |
| 70 |
1
|
crngmgp |
|- ( CCfld e. CRing -> M e. CMnd ) |
| 71 |
69 70
|
mp1i |
|- ( ph -> M e. CMnd ) |
| 72 |
62
|
submmnd |
|- ( RR+ e. ( SubMnd ` M ) -> ( M |`s RR+ ) e. Mnd ) |
| 73 |
61 72
|
mp1i |
|- ( ph -> ( M |`s RR+ ) e. Mnd ) |
| 74 |
62
|
subcmn |
|- ( ( M e. CMnd /\ ( M |`s RR+ ) e. Mnd ) -> ( M |`s RR+ ) e. CMnd ) |
| 75 |
71 73 74
|
syl2anc |
|- ( ph -> ( M |`s RR+ ) e. CMnd ) |
| 76 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 77 |
76
|
subrgring |
|- ( RR e. ( SubRing ` CCfld ) -> RRfld e. Ring ) |
| 78 |
10 77
|
ax-mp |
|- RRfld e. Ring |
| 79 |
|
ringmnd |
|- ( RRfld e. Ring -> RRfld e. Mnd ) |
| 80 |
78 79
|
mp1i |
|- ( ph -> RRfld e. Mnd ) |
| 81 |
1
|
oveq1i |
|- ( M |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) |
| 82 |
81
|
reloggim |
|- ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpIso RRfld ) |
| 83 |
|
gimghm |
|- ( ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpIso RRfld ) -> ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpHom RRfld ) ) |
| 84 |
82 83
|
ax-mp |
|- ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpHom RRfld ) |
| 85 |
|
ghmmhm |
|- ( ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpHom RRfld ) -> ( log |` RR+ ) e. ( ( M |`s RR+ ) MndHom RRfld ) ) |
| 86 |
84 85
|
mp1i |
|- ( ph -> ( log |` RR+ ) e. ( ( M |`s RR+ ) MndHom RRfld ) ) |
| 87 |
|
1ex |
|- 1 e. _V |
| 88 |
87
|
a1i |
|- ( ph -> 1 e. _V ) |
| 89 |
4 2 88
|
fdmfifsupp |
|- ( ph -> F finSupp 1 ) |
| 90 |
64 68 75 80 2 86 4 89
|
gsummhm |
|- ( ph -> ( RRfld gsum ( ( log |` RR+ ) o. F ) ) = ( ( log |` RR+ ) ` ( ( M |`s RR+ ) gsum F ) ) ) |
| 91 |
|
subgsubm |
|- ( RR e. ( SubGrp ` CCfld ) -> RR e. ( SubMnd ` CCfld ) ) |
| 92 |
12 91
|
syl |
|- ( ph -> RR e. ( SubMnd ` CCfld ) ) |
| 93 |
|
fco |
|- ( ( ( log |` RR+ ) : RR+ --> RR /\ F : A --> RR+ ) -> ( ( log |` RR+ ) o. F ) : A --> RR ) |
| 94 |
40 4 93
|
syl2anc |
|- ( ph -> ( ( log |` RR+ ) o. F ) : A --> RR ) |
| 95 |
2 92 94 76
|
gsumsubm |
|- ( ph -> ( CCfld gsum ( ( log |` RR+ ) o. F ) ) = ( RRfld gsum ( ( log |` RR+ ) o. F ) ) ) |
| 96 |
61
|
a1i |
|- ( ph -> RR+ e. ( SubMnd ` M ) ) |
| 97 |
2 96 4 62
|
gsumsubm |
|- ( ph -> ( M gsum F ) = ( ( M |`s RR+ ) gsum F ) ) |
| 98 |
97
|
fveq2d |
|- ( ph -> ( ( log |` RR+ ) ` ( M gsum F ) ) = ( ( log |` RR+ ) ` ( ( M |`s RR+ ) gsum F ) ) ) |
| 99 |
90 95 98
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( log |` RR+ ) o. F ) ) = ( ( log |` RR+ ) ` ( M gsum F ) ) ) |
| 100 |
66 71 2 96 4 89
|
gsumsubmcl |
|- ( ph -> ( M gsum F ) e. RR+ ) |
| 101 |
100
|
fvresd |
|- ( ph -> ( ( log |` RR+ ) ` ( M gsum F ) ) = ( log ` ( M gsum F ) ) ) |
| 102 |
48 99 101
|
3eqtrd |
|- ( ph -> -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = ( log ` ( M gsum F ) ) ) |
| 103 |
102
|
oveq1d |
|- ( ph -> ( -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( ( log ` ( M gsum F ) ) / ( # ` A ) ) ) |
| 104 |
100
|
relogcld |
|- ( ph -> ( log ` ( M gsum F ) ) e. RR ) |
| 105 |
104
|
recnd |
|- ( ph -> ( log ` ( M gsum F ) ) e. CC ) |
| 106 |
105 25 26
|
divrec2d |
|- ( ph -> ( ( log ` ( M gsum F ) ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) |
| 107 |
27 103 106
|
3eqtrd |
|- ( ph -> -u ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) |
| 108 |
37
|
oveq2d |
|- ( ph -> ( CCfld gsum F ) = ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) |
| 109 |
13
|
rpcnd |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. CC ) |
| 110 |
2 109
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) = sum_ k e. A ( F ` k ) ) |
| 111 |
108 110
|
eqtrd |
|- ( ph -> ( CCfld gsum F ) = sum_ k e. A ( F ` k ) ) |
| 112 |
2 3 13
|
fsumrpcl |
|- ( ph -> sum_ k e. A ( F ` k ) e. RR+ ) |
| 113 |
111 112
|
eqeltrd |
|- ( ph -> ( CCfld gsum F ) e. RR+ ) |
| 114 |
24
|
nnrpd |
|- ( ph -> ( # ` A ) e. RR+ ) |
| 115 |
113 114
|
rpdivcld |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) e. RR+ ) |
| 116 |
115
|
relogcld |
|- ( ph -> ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) e. RR ) |
| 117 |
20 24
|
nndivred |
|- ( ph -> ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) e. RR ) |
| 118 |
|
rpssre |
|- RR+ C_ RR |
| 119 |
118
|
a1i |
|- ( ph -> RR+ C_ RR ) |
| 120 |
|
relogcl |
|- ( w e. RR+ -> ( log ` w ) e. RR ) |
| 121 |
120
|
adantl |
|- ( ( ph /\ w e. RR+ ) -> ( log ` w ) e. RR ) |
| 122 |
121
|
renegcld |
|- ( ( ph /\ w e. RR+ ) -> -u ( log ` w ) e. RR ) |
| 123 |
122
|
fmpttd |
|- ( ph -> ( w e. RR+ |-> -u ( log ` w ) ) : RR+ --> RR ) |
| 124 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
| 125 |
124
|
eleq2i |
|- ( a e. ( 0 (,) +oo ) <-> a e. RR+ ) |
| 126 |
124
|
eleq2i |
|- ( b e. ( 0 (,) +oo ) <-> b e. RR+ ) |
| 127 |
|
iccssioo2 |
|- ( ( a e. ( 0 (,) +oo ) /\ b e. ( 0 (,) +oo ) ) -> ( a [,] b ) C_ ( 0 (,) +oo ) ) |
| 128 |
125 126 127
|
syl2anbr |
|- ( ( a e. RR+ /\ b e. RR+ ) -> ( a [,] b ) C_ ( 0 (,) +oo ) ) |
| 129 |
128 124
|
sseqtrdi |
|- ( ( a e. RR+ /\ b e. RR+ ) -> ( a [,] b ) C_ RR+ ) |
| 130 |
129
|
adantl |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( a [,] b ) C_ RR+ ) |
| 131 |
24
|
nnrecred |
|- ( ph -> ( 1 / ( # ` A ) ) e. RR ) |
| 132 |
114
|
rpreccld |
|- ( ph -> ( 1 / ( # ` A ) ) e. RR+ ) |
| 133 |
132
|
rpge0d |
|- ( ph -> 0 <_ ( 1 / ( # ` A ) ) ) |
| 134 |
|
elrege0 |
|- ( ( 1 / ( # ` A ) ) e. ( 0 [,) +oo ) <-> ( ( 1 / ( # ` A ) ) e. RR /\ 0 <_ ( 1 / ( # ` A ) ) ) ) |
| 135 |
131 133 134
|
sylanbrc |
|- ( ph -> ( 1 / ( # ` A ) ) e. ( 0 [,) +oo ) ) |
| 136 |
|
fconst6g |
|- ( ( 1 / ( # ` A ) ) e. ( 0 [,) +oo ) -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> ( 0 [,) +oo ) ) |
| 137 |
135 136
|
syl |
|- ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> ( 0 [,) +oo ) ) |
| 138 |
|
0lt1 |
|- 0 < 1 |
| 139 |
|
fconstmpt |
|- ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) |
| 140 |
139
|
oveq2i |
|- ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) |
| 141 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
| 142 |
6 141
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
| 143 |
131
|
recnd |
|- ( ph -> ( 1 / ( # ` A ) ) e. CC ) |
| 144 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
| 145 |
53 144
|
gsumconst |
|- ( ( CCfld e. Mnd /\ A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) ) |
| 146 |
142 2 143 145
|
syl3anc |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) ) |
| 147 |
24
|
nnzd |
|- ( ph -> ( # ` A ) e. ZZ ) |
| 148 |
|
cnfldmulg |
|- ( ( ( # ` A ) e. ZZ /\ ( 1 / ( # ` A ) ) e. CC ) -> ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) |
| 149 |
147 143 148
|
syl2anc |
|- ( ph -> ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) |
| 150 |
25 26
|
recidd |
|- ( ph -> ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) = 1 ) |
| 151 |
146 149 150
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = 1 ) |
| 152 |
140 151
|
eqtrid |
|- ( ph -> ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = 1 ) |
| 153 |
138 152
|
breqtrrid |
|- ( ph -> 0 < ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) |
| 154 |
|
logccv |
|- ( ( ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) < ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
| 155 |
154
|
3adant1 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) < ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
| 156 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
| 157 |
|
simp3 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. ( 0 (,) 1 ) ) |
| 158 |
156 157
|
sselid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. RR ) |
| 159 |
|
simp21 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> x e. RR+ ) |
| 160 |
159
|
relogcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` x ) e. RR ) |
| 161 |
158 160
|
remulcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( log ` x ) ) e. RR ) |
| 162 |
|
1re |
|- 1 e. RR |
| 163 |
|
resubcl |
|- ( ( 1 e. RR /\ t e. RR ) -> ( 1 - t ) e. RR ) |
| 164 |
162 158 163
|
sylancr |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( 1 - t ) e. RR ) |
| 165 |
|
simp22 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> y e. RR+ ) |
| 166 |
165
|
relogcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` y ) e. RR ) |
| 167 |
164 166
|
remulcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( log ` y ) ) e. RR ) |
| 168 |
161 167
|
readdcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) e. RR ) |
| 169 |
|
simp1 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ph ) |
| 170 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 171 |
170 157
|
sselid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. ( 0 [,] 1 ) ) |
| 172 |
119 130
|
cvxcl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. RR+ ) |
| 173 |
169 159 165 171 172
|
syl13anc |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. RR+ ) |
| 174 |
173
|
relogcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. RR ) |
| 175 |
168 174
|
ltnegd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) < ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <-> -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) < -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) ) ) |
| 176 |
155 175
|
mpbid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) < -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) ) |
| 177 |
|
fveq2 |
|- ( w = ( ( t x. x ) + ( ( 1 - t ) x. y ) ) -> ( log ` w ) = ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
| 178 |
177
|
negeqd |
|- ( w = ( ( t x. x ) + ( ( 1 - t ) x. y ) ) -> -u ( log ` w ) = -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
| 179 |
|
eqid |
|- ( w e. RR+ |-> -u ( log ` w ) ) = ( w e. RR+ |-> -u ( log ` w ) ) |
| 180 |
|
negex |
|- -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. _V |
| 181 |
178 179 180
|
fvmpt |
|- ( ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
| 182 |
173 181
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
| 183 |
|
fveq2 |
|- ( w = x -> ( log ` w ) = ( log ` x ) ) |
| 184 |
183
|
negeqd |
|- ( w = x -> -u ( log ` w ) = -u ( log ` x ) ) |
| 185 |
|
negex |
|- -u ( log ` x ) e. _V |
| 186 |
184 179 185
|
fvmpt |
|- ( x e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) = -u ( log ` x ) ) |
| 187 |
159 186
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) = -u ( log ` x ) ) |
| 188 |
187
|
oveq2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) = ( t x. -u ( log ` x ) ) ) |
| 189 |
158
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. CC ) |
| 190 |
160
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` x ) e. CC ) |
| 191 |
189 190
|
mulneg2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. -u ( log ` x ) ) = -u ( t x. ( log ` x ) ) ) |
| 192 |
188 191
|
eqtrd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) = -u ( t x. ( log ` x ) ) ) |
| 193 |
|
fveq2 |
|- ( w = y -> ( log ` w ) = ( log ` y ) ) |
| 194 |
193
|
negeqd |
|- ( w = y -> -u ( log ` w ) = -u ( log ` y ) ) |
| 195 |
|
negex |
|- -u ( log ` y ) e. _V |
| 196 |
194 179 195
|
fvmpt |
|- ( y e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) = -u ( log ` y ) ) |
| 197 |
165 196
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) = -u ( log ` y ) ) |
| 198 |
197
|
oveq2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) = ( ( 1 - t ) x. -u ( log ` y ) ) ) |
| 199 |
164
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( 1 - t ) e. CC ) |
| 200 |
166
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` y ) e. CC ) |
| 201 |
199 200
|
mulneg2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. -u ( log ` y ) ) = -u ( ( 1 - t ) x. ( log ` y ) ) ) |
| 202 |
198 201
|
eqtrd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) = -u ( ( 1 - t ) x. ( log ` y ) ) ) |
| 203 |
192 202
|
oveq12d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) + ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) ) = ( -u ( t x. ( log ` x ) ) + -u ( ( 1 - t ) x. ( log ` y ) ) ) ) |
| 204 |
161
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( log ` x ) ) e. CC ) |
| 205 |
167
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( log ` y ) ) e. CC ) |
| 206 |
204 205
|
negdid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) = ( -u ( t x. ( log ` x ) ) + -u ( ( 1 - t ) x. ( log ` y ) ) ) ) |
| 207 |
203 206
|
eqtr4d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) + ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) ) = -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) ) |
| 208 |
176 182 207
|
3brtr4d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) < ( ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) + ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) ) ) |
| 209 |
119 123 130 208
|
scvxcvx |
|- ( ( ph /\ ( u e. RR+ /\ v e. RR+ /\ s e. ( 0 [,] 1 ) ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( s x. u ) + ( ( 1 - s ) x. v ) ) ) <_ ( ( s x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` u ) ) + ( ( 1 - s ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` v ) ) ) ) |
| 210 |
119 123 130 2 137 4 153 209
|
jensen |
|- ( ph -> ( ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) e. RR+ /\ ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) <_ ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) ) |
| 211 |
210
|
simprd |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) <_ ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) |
| 212 |
131
|
adantr |
|- ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. RR ) |
| 213 |
139
|
a1i |
|- ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) ) |
| 214 |
2 212 13 213 37
|
offval2 |
|- ( ph -> ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) = ( k e. A |-> ( ( 1 / ( # ` A ) ) x. ( F ` k ) ) ) ) |
| 215 |
214
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) = ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. ( F ` k ) ) ) ) ) |
| 216 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 217 |
6
|
a1i |
|- ( ph -> CCfld e. Ring ) |
| 218 |
109
|
fmpttd |
|- ( ph -> ( k e. A |-> ( F ` k ) ) : A --> CC ) |
| 219 |
218 2 18
|
fdmfifsupp |
|- ( ph -> ( k e. A |-> ( F ` k ) ) finSupp 0 ) |
| 220 |
53 5 216 217 2 143 109 219
|
gsummulc2 |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. ( F ` k ) ) ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) ) |
| 221 |
|
fss |
|- ( ( F : A --> RR+ /\ RR+ C_ RR ) -> F : A --> RR ) |
| 222 |
4 118 221
|
sylancl |
|- ( ph -> F : A --> RR ) |
| 223 |
4 2 18
|
fdmfifsupp |
|- ( ph -> F finSupp 0 ) |
| 224 |
5 8 2 12 222 223
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum F ) e. RR ) |
| 225 |
224
|
recnd |
|- ( ph -> ( CCfld gsum F ) e. CC ) |
| 226 |
225 25 26
|
divrec2d |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum F ) ) ) |
| 227 |
108
|
oveq2d |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( CCfld gsum F ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) ) |
| 228 |
226 227
|
eqtr2d |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
| 229 |
215 220 228
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
| 230 |
229 152
|
oveq12d |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( ( CCfld gsum F ) / ( # ` A ) ) / 1 ) ) |
| 231 |
224 24
|
nndivred |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) e. RR ) |
| 232 |
231
|
recnd |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) e. CC ) |
| 233 |
232
|
div1d |
|- ( ph -> ( ( ( CCfld gsum F ) / ( # ` A ) ) / 1 ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
| 234 |
230 233
|
eqtrd |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
| 235 |
234
|
fveq2d |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) = ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 236 |
|
fveq2 |
|- ( w = ( ( CCfld gsum F ) / ( # ` A ) ) -> ( log ` w ) = ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 237 |
236
|
negeqd |
|- ( w = ( ( CCfld gsum F ) / ( # ` A ) ) -> -u ( log ` w ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 238 |
|
negex |
|- -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) e. _V |
| 239 |
237 179 238
|
fvmpt |
|- ( ( ( CCfld gsum F ) / ( # ` A ) ) e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum F ) / ( # ` A ) ) ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 240 |
115 239
|
syl |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum F ) / ( # ` A ) ) ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 241 |
235 240
|
eqtrd |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 242 |
53 5 216 217 2 143 32 19
|
gsummulc2 |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. -u ( log ` ( F ` k ) ) ) ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) ) ) |
| 243 |
|
negex |
|- -u ( log ` ( F ` k ) ) e. _V |
| 244 |
243
|
a1i |
|- ( ( ph /\ k e. A ) -> -u ( log ` ( F ` k ) ) e. _V ) |
| 245 |
|
eqidd |
|- ( ph -> ( w e. RR+ |-> -u ( log ` w ) ) = ( w e. RR+ |-> -u ( log ` w ) ) ) |
| 246 |
|
fveq2 |
|- ( w = ( F ` k ) -> ( log ` w ) = ( log ` ( F ` k ) ) ) |
| 247 |
246
|
negeqd |
|- ( w = ( F ` k ) -> -u ( log ` w ) = -u ( log ` ( F ` k ) ) ) |
| 248 |
13 37 245 247
|
fmptco |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) = ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) |
| 249 |
2 212 244 213 248
|
offval2 |
|- ( ph -> ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) = ( k e. A |-> ( ( 1 / ( # ` A ) ) x. -u ( log ` ( F ` k ) ) ) ) ) |
| 250 |
249
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) = ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. -u ( log ` ( F ` k ) ) ) ) ) ) |
| 251 |
21 25 26
|
divrec2d |
|- ( ph -> ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) ) ) |
| 252 |
242 250 251
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) = ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
| 253 |
252 152
|
oveq12d |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) / 1 ) ) |
| 254 |
117
|
recnd |
|- ( ph -> ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) e. CC ) |
| 255 |
254
|
div1d |
|- ( ph -> ( ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) / 1 ) = ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
| 256 |
253 255
|
eqtrd |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
| 257 |
211 241 256
|
3brtr3d |
|- ( ph -> -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) <_ ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
| 258 |
116 117 257
|
lenegcon1d |
|- ( ph -> -u ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 259 |
107 258
|
eqbrtrrd |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
| 260 |
131 104
|
remulcld |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) e. RR ) |
| 261 |
|
efle |
|- ( ( ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) e. RR /\ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) e. RR ) -> ( ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) <-> ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) <_ ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) ) |
| 262 |
260 116 261
|
syl2anc |
|- ( ph -> ( ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) <-> ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) <_ ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) ) |
| 263 |
259 262
|
mpbid |
|- ( ph -> ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) <_ ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) |
| 264 |
100
|
rpcnd |
|- ( ph -> ( M gsum F ) e. CC ) |
| 265 |
100
|
rpne0d |
|- ( ph -> ( M gsum F ) =/= 0 ) |
| 266 |
264 265 143
|
cxpefd |
|- ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) = ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) ) |
| 267 |
115
|
reeflogd |
|- ( ph -> ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
| 268 |
267
|
eqcomd |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) = ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) |
| 269 |
263 266 268
|
3brtr4d |
|- ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) <_ ( ( CCfld gsum F ) / ( # ` A ) ) ) |