| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jensen.1 |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 2 |
|
jensen.2 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
| 3 |
|
jensen.3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ 𝐷 ) |
| 4 |
|
jensen.4 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 5 |
|
jensen.5 |
⊢ ( 𝜑 → 𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
| 6 |
|
jensen.6 |
⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ 𝐷 ) |
| 7 |
|
jensen.7 |
⊢ ( 𝜑 → 0 < ( ℂfld Σg 𝑇 ) ) |
| 8 |
|
jensen.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ≤ ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 |
5
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn 𝐴 ) |
| 10 |
|
fnresdm |
⊢ ( 𝑇 Fn 𝐴 → ( 𝑇 ↾ 𝐴 ) = 𝑇 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝑇 ↾ 𝐴 ) = 𝑇 ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) = ( ℂfld Σg 𝑇 ) ) |
| 13 |
7 12
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) |
| 14 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 15 |
13 14
|
jctil |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ) |
| 16 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 17 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( 𝑇 ↾ 𝑎 ) = ( 𝑇 ↾ ∅ ) ) |
| 18 |
|
res0 |
⊢ ( 𝑇 ↾ ∅ ) = ∅ |
| 19 |
17 18
|
eqtrdi |
⊢ ( 𝑎 = ∅ → ( 𝑇 ↾ 𝑎 ) = ∅ ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) = ( ℂfld Σg ∅ ) ) |
| 21 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 22 |
21
|
gsum0 |
⊢ ( ℂfld Σg ∅ ) = 0 |
| 23 |
20 22
|
eqtrdi |
⊢ ( 𝑎 = ∅ → ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) = 0 ) |
| 24 |
23
|
breq2d |
⊢ ( 𝑎 = ∅ → ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ↔ 0 < 0 ) ) |
| 25 |
16 24
|
anbi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( ∅ ⊆ 𝐴 ∧ 0 < 0 ) ) ) |
| 26 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) ) |
| 28 |
27 23
|
oveq12d |
⊢ ( 𝑎 = ∅ → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) / 0 ) ) |
| 29 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) ) |
| 31 |
30 23
|
oveq12d |
⊢ ( 𝑎 = ∅ → ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) ) |
| 32 |
31
|
breq2d |
⊢ ( 𝑎 = ∅ → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) ) ) |
| 33 |
32
|
rabbidv |
⊢ ( 𝑎 = ∅ → { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } = { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) } ) |
| 34 |
28 33
|
eleq12d |
⊢ ( 𝑎 = ∅ → ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ↔ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) / 0 ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) } ) ) |
| 35 |
25 34
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ↔ ( ( ∅ ⊆ 𝐴 ∧ 0 < 0 ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) / 0 ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) } ) ) ) |
| 36 |
35
|
imbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝜑 → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ) ↔ ( 𝜑 → ( ( ∅ ⊆ 𝐴 ∧ 0 < 0 ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) / 0 ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) } ) ) ) ) |
| 37 |
|
sseq1 |
⊢ ( 𝑎 = 𝑘 → ( 𝑎 ⊆ 𝐴 ↔ 𝑘 ⊆ 𝐴 ) ) |
| 38 |
|
reseq2 |
⊢ ( 𝑎 = 𝑘 → ( 𝑇 ↾ 𝑎 ) = ( 𝑇 ↾ 𝑘 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑎 = 𝑘 → ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) |
| 40 |
39
|
breq2d |
⊢ ( 𝑎 = 𝑘 → ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ↔ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) |
| 41 |
37 40
|
anbi12d |
⊢ ( 𝑎 = 𝑘 → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 42 |
|
reseq2 |
⊢ ( 𝑎 = 𝑘 → ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑎 = 𝑘 → ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) ) |
| 44 |
43 39
|
oveq12d |
⊢ ( 𝑎 = 𝑘 → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) |
| 45 |
|
reseq2 |
⊢ ( 𝑎 = 𝑘 → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑎 = 𝑘 → ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) ) |
| 47 |
46 39
|
oveq12d |
⊢ ( 𝑎 = 𝑘 → ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) |
| 48 |
47
|
breq2d |
⊢ ( 𝑎 = 𝑘 → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 49 |
48
|
rabbidv |
⊢ ( 𝑎 = 𝑘 → { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } = { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) |
| 50 |
44 49
|
eleq12d |
⊢ ( 𝑎 = 𝑘 → ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ↔ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) |
| 51 |
41 50
|
imbi12d |
⊢ ( 𝑎 = 𝑘 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ↔ ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) ) |
| 52 |
51
|
imbi2d |
⊢ ( 𝑎 = 𝑘 → ( ( 𝜑 → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ) ↔ ( 𝜑 → ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) ) ) |
| 53 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐴 ↔ ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ) ) |
| 54 |
|
reseq2 |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( 𝑇 ↾ 𝑎 ) = ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) = ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 56 |
55
|
breq2d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ↔ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) |
| 57 |
53 56
|
anbi12d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ) |
| 58 |
|
reseq2 |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 60 |
59 55
|
oveq12d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) |
| 61 |
|
reseq2 |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 63 |
62 55
|
oveq12d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) |
| 64 |
63
|
breq2d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ) |
| 65 |
64
|
rabbidv |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } = { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) |
| 66 |
60 65
|
eleq12d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ↔ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) |
| 67 |
57 66
|
imbi12d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ↔ ( ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) ) |
| 68 |
67
|
imbi2d |
⊢ ( 𝑎 = ( 𝑘 ∪ { 𝑐 } ) → ( ( 𝜑 → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ) ↔ ( 𝜑 → ( ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) ) ) |
| 69 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 70 |
|
reseq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑇 ↾ 𝑎 ) = ( 𝑇 ↾ 𝐴 ) ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) = ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) |
| 72 |
71
|
breq2d |
⊢ ( 𝑎 = 𝐴 → ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ↔ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ) |
| 73 |
69 72
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( 𝐴 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ) ) |
| 74 |
|
reseq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) ) |
| 76 |
75 71
|
oveq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ) |
| 77 |
|
reseq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) = ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) |
| 78 |
77
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) = ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) ) |
| 79 |
78 71
|
oveq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) = ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ) |
| 80 |
79
|
breq2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ) ) |
| 81 |
80
|
rabbidv |
⊢ ( 𝑎 = 𝐴 → { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } = { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } ) |
| 82 |
76 81
|
eleq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ↔ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } ) ) |
| 83 |
73 82
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ↔ ( ( 𝐴 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } ) ) ) |
| 84 |
83
|
imbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 → ( ( 𝑎 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑎 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑎 ) ) ) } ) ) ↔ ( 𝜑 → ( ( 𝐴 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } ) ) ) ) |
| 85 |
|
0re |
⊢ 0 ∈ ℝ |
| 86 |
85
|
ltnri |
⊢ ¬ 0 < 0 |
| 87 |
86
|
pm2.21i |
⊢ ( 0 < 0 → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) / 0 ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) } ) |
| 88 |
87
|
adantl |
⊢ ( ( ∅ ⊆ 𝐴 ∧ 0 < 0 ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) / 0 ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) } ) |
| 89 |
88
|
a1i |
⊢ ( 𝜑 → ( ( ∅ ⊆ 𝐴 ∧ 0 < 0 ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ∅ ) ) / 0 ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ∅ ) ) / 0 ) } ) ) |
| 90 |
|
impexp |
⊢ ( ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ↔ ( 𝑘 ⊆ 𝐴 → ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) ) |
| 91 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ) |
| 92 |
91
|
unssad |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → 𝑘 ⊆ 𝐴 ) |
| 93 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) |
| 94 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 𝐷 ⊆ ℝ ) |
| 95 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
| 96 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 𝜑 ) |
| 97 |
96 3
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) ∧ ( 𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ 𝐷 ) |
| 98 |
96 4
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 𝐴 ∈ Fin ) |
| 99 |
96 5
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
| 100 |
96 6
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 𝑋 : 𝐴 ⟶ 𝐷 ) |
| 101 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 0 < ( ℂfld Σg 𝑇 ) ) |
| 102 |
96 8
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ≤ ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 103 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ¬ 𝑐 ∈ 𝑘 ) |
| 104 |
91
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ) |
| 105 |
|
eqid |
⊢ ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) |
| 106 |
|
eqid |
⊢ ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) = ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) |
| 107 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 108 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 109 |
107 108
|
mp1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ℂfld ∈ CMnd ) |
| 110 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → 𝐴 ∈ Fin ) |
| 111 |
110 92
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → 𝑘 ∈ Fin ) |
| 112 |
|
rege0subm |
⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) |
| 113 |
112
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) ) |
| 114 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → 𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
| 115 |
114 92
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( 𝑇 ↾ 𝑘 ) : 𝑘 ⟶ ( 0 [,) +∞ ) ) |
| 116 |
|
c0ex |
⊢ 0 ∈ V |
| 117 |
116
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → 0 ∈ V ) |
| 118 |
115 111 117
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( 𝑇 ↾ 𝑘 ) finSupp 0 ) |
| 119 |
21 109 111 113 115 118
|
gsumsubmcl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
| 120 |
|
elrege0 |
⊢ ( ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ℝ ∧ 0 ≤ ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) |
| 121 |
120
|
simplbi |
⊢ ( ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ( 0 [,) +∞ ) → ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ℝ ) |
| 122 |
119 121
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ℝ ) |
| 123 |
122
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ℝ ) |
| 124 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) |
| 125 |
123 124
|
elrpd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ℝ+ ) |
| 126 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) |
| 127 |
|
fveq2 |
⊢ ( 𝑤 = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 128 |
127
|
breq1d |
⊢ ( 𝑤 = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ↔ ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 129 |
128
|
elrab |
⊢ ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ↔ ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ 𝐷 ∧ ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 130 |
126 129
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ 𝐷 ∧ ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 131 |
130
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ 𝐷 ) |
| 132 |
130
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) |
| 133 |
94 95 97 98 99 100 101 102 103 104 105 106 125 131 132
|
jensenlem2 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ 𝐷 ∧ ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ) |
| 134 |
|
fveq2 |
⊢ ( 𝑤 = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ) |
| 135 |
134
|
breq1d |
⊢ ( 𝑤 = ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ↔ ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ) |
| 136 |
135
|
elrab |
⊢ ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ↔ ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ 𝐷 ∧ ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ) |
| 137 |
133 136
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∧ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) |
| 138 |
137
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) |
| 139 |
93 138
|
embantd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) |
| 140 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 141 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
| 142 |
107 141
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ℂfld ∈ Mnd ) |
| 143 |
110 91
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( 𝑘 ∪ { 𝑐 } ) ∈ Fin ) |
| 144 |
143
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑘 ∪ { 𝑐 } ) ∈ Fin ) |
| 145 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑘 ∪ { 𝑐 } ) |
| 146 |
|
vsnid |
⊢ 𝑐 ∈ { 𝑐 } |
| 147 |
145 146
|
sselii |
⊢ 𝑐 ∈ ( 𝑘 ∪ { 𝑐 } ) |
| 148 |
147
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑐 ∈ ( 𝑘 ∪ { 𝑐 } ) ) |
| 149 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 151 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 152 |
|
fss |
⊢ ( ( 𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝑇 : 𝐴 ⟶ ℝ ) |
| 153 |
5 151 152
|
sylancl |
⊢ ( 𝜑 → 𝑇 : 𝐴 ⟶ ℝ ) |
| 154 |
6 1
|
fssd |
⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ ℝ ) |
| 155 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 156 |
150 153 154 4 4 155
|
off |
⊢ ( 𝜑 → ( 𝑇 ∘f · 𝑋 ) : 𝐴 ⟶ ℝ ) |
| 157 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 158 |
|
fss |
⊢ ( ( ( 𝑇 ∘f · 𝑋 ) : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑇 ∘f · 𝑋 ) : 𝐴 ⟶ ℂ ) |
| 159 |
156 157 158
|
sylancl |
⊢ ( 𝜑 → ( 𝑇 ∘f · 𝑋 ) : 𝐴 ⟶ ℂ ) |
| 160 |
159
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑇 ∘f · 𝑋 ) : 𝐴 ⟶ ℂ ) |
| 161 |
91
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ) |
| 162 |
160 161
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) : ( 𝑘 ∪ { 𝑐 } ) ⟶ ℂ ) |
| 163 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
| 164 |
110
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝐴 ∈ Fin ) |
| 165 |
163 164
|
fexd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑇 ∈ V ) |
| 166 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑋 : 𝐴 ⟶ 𝐷 ) |
| 167 |
166 164
|
fexd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑋 ∈ V ) |
| 168 |
|
offres |
⊢ ( ( 𝑇 ∈ V ∧ 𝑋 ∈ V ) → ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) = ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( 𝑋 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 169 |
165 167 168
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) = ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( 𝑋 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 170 |
169
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) supp 0 ) = ( ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( 𝑋 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) supp 0 ) ) |
| 171 |
151 157
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 172 |
|
fss |
⊢ ( ( 𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → 𝑇 : 𝐴 ⟶ ℂ ) |
| 173 |
163 171 172
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑇 : 𝐴 ⟶ ℂ ) |
| 174 |
173 161
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) : ( 𝑘 ∪ { 𝑐 } ) ⟶ ℂ ) |
| 175 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) → 𝑥 ∈ ( 𝑘 ∪ { 𝑐 } ) ) |
| 176 |
175
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) ) → 𝑥 ∈ ( 𝑘 ∪ { 𝑐 } ) ) |
| 177 |
176
|
fvresd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) ) → ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 178 |
|
difun2 |
⊢ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) = ( 𝑘 ∖ { 𝑐 } ) |
| 179 |
|
difss |
⊢ ( 𝑘 ∖ { 𝑐 } ) ⊆ 𝑘 |
| 180 |
178 179
|
eqsstri |
⊢ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) ⊆ 𝑘 |
| 181 |
180
|
sseli |
⊢ ( 𝑥 ∈ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) → 𝑥 ∈ 𝑘 ) |
| 182 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) |
| 183 |
92
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑘 ⊆ 𝐴 ) |
| 184 |
163 183
|
feqresmpt |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑇 ↾ 𝑘 ) = ( 𝑥 ∈ 𝑘 ↦ ( 𝑇 ‘ 𝑥 ) ) ) |
| 185 |
184
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) = ( ℂfld Σg ( 𝑥 ∈ 𝑘 ↦ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 186 |
111
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑘 ∈ Fin ) |
| 187 |
183
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑘 ) → 𝑥 ∈ 𝐴 ) |
| 188 |
163
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑇 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 189 |
187 188
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑘 ) → ( 𝑇 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 190 |
171 189
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑘 ) → ( 𝑇 ‘ 𝑥 ) ∈ ℂ ) |
| 191 |
186 190
|
gsumfsum |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( 𝑥 ∈ 𝑘 ↦ ( 𝑇 ‘ 𝑥 ) ) ) = Σ 𝑥 ∈ 𝑘 ( 𝑇 ‘ 𝑥 ) ) |
| 192 |
182 185 191
|
3eqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → Σ 𝑥 ∈ 𝑘 ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 193 |
|
elrege0 |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑇 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝑇 ‘ 𝑥 ) ) ) |
| 194 |
189 193
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑘 ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝑇 ‘ 𝑥 ) ) ) |
| 195 |
194
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑘 ) → ( 𝑇 ‘ 𝑥 ) ∈ ℝ ) |
| 196 |
194
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑘 ) → 0 ≤ ( 𝑇 ‘ 𝑥 ) ) |
| 197 |
186 195 196
|
fsum00 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( Σ 𝑥 ∈ 𝑘 ( 𝑇 ‘ 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑘 ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
| 198 |
192 197
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ∀ 𝑥 ∈ 𝑘 ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 199 |
198
|
r19.21bi |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ 𝑘 ) → ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 200 |
181 199
|
sylan2 |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) ) → ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 201 |
177 200
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ ( ( 𝑘 ∪ { 𝑐 } ) ∖ { 𝑐 } ) ) → ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑥 ) = 0 ) |
| 202 |
174 201
|
suppss |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) supp 0 ) ⊆ { 𝑐 } ) |
| 203 |
|
mul02 |
⊢ ( 𝑥 ∈ ℂ → ( 0 · 𝑥 ) = 0 ) |
| 204 |
203
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∧ 𝑥 ∈ ℂ ) → ( 0 · 𝑥 ) = 0 ) |
| 205 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝐷 ⊆ ℝ ) |
| 206 |
205 157
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝐷 ⊆ ℂ ) |
| 207 |
166 206
|
fssd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑋 : 𝐴 ⟶ ℂ ) |
| 208 |
207 161
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑋 ↾ ( 𝑘 ∪ { 𝑐 } ) ) : ( 𝑘 ∪ { 𝑐 } ) ⟶ ℂ ) |
| 209 |
116
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 0 ∈ V ) |
| 210 |
202 204 174 208 144 209
|
suppssof1 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( 𝑋 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) supp 0 ) ⊆ { 𝑐 } ) |
| 211 |
170 210
|
eqsstrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) supp 0 ) ⊆ { 𝑐 } ) |
| 212 |
140 21 142 144 148 162 211
|
gsumpt |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) = ( ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑐 ) ) |
| 213 |
148
|
fvresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑐 ) = ( ( 𝑇 ∘f · 𝑋 ) ‘ 𝑐 ) ) |
| 214 |
163
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑇 Fn 𝐴 ) |
| 215 |
166
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑋 Fn 𝐴 ) |
| 216 |
161 148
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝑐 ∈ 𝐴 ) |
| 217 |
|
fnfvof |
⊢ ( ( ( 𝑇 Fn 𝐴 ∧ 𝑋 Fn 𝐴 ) ∧ ( 𝐴 ∈ Fin ∧ 𝑐 ∈ 𝐴 ) ) → ( ( 𝑇 ∘f · 𝑋 ) ‘ 𝑐 ) = ( ( 𝑇 ‘ 𝑐 ) · ( 𝑋 ‘ 𝑐 ) ) ) |
| 218 |
214 215 164 216 217
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ∘f · 𝑋 ) ‘ 𝑐 ) = ( ( 𝑇 ‘ 𝑐 ) · ( 𝑋 ‘ 𝑐 ) ) ) |
| 219 |
212 213 218
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) = ( ( 𝑇 ‘ 𝑐 ) · ( 𝑋 ‘ 𝑐 ) ) ) |
| 220 |
140 21 142 144 148 174 202
|
gsumpt |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) = ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑐 ) ) |
| 221 |
148
|
fvresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑐 ) = ( 𝑇 ‘ 𝑐 ) ) |
| 222 |
220 221
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) = ( 𝑇 ‘ 𝑐 ) ) |
| 223 |
219 222
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) = ( ( ( 𝑇 ‘ 𝑐 ) · ( 𝑋 ‘ 𝑐 ) ) / ( 𝑇 ‘ 𝑐 ) ) ) |
| 224 |
207 216
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑋 ‘ 𝑐 ) ∈ ℂ ) |
| 225 |
173 216
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑇 ‘ 𝑐 ) ∈ ℂ ) |
| 226 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 227 |
226 222
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 0 < ( 𝑇 ‘ 𝑐 ) ) |
| 228 |
227
|
gt0ne0d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑇 ‘ 𝑐 ) ≠ 0 ) |
| 229 |
224 225 228
|
divcan3d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ‘ 𝑐 ) · ( 𝑋 ‘ 𝑐 ) ) / ( 𝑇 ‘ 𝑐 ) ) = ( 𝑋 ‘ 𝑐 ) ) |
| 230 |
223 229
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) = ( 𝑋 ‘ 𝑐 ) ) |
| 231 |
166 216
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑋 ‘ 𝑐 ) ∈ 𝐷 ) |
| 232 |
230 231
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ 𝐷 ) |
| 233 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
| 234 |
233 231
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ∈ ℝ ) |
| 235 |
234
|
leidd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) |
| 236 |
230
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) = ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) |
| 237 |
|
fco |
⊢ ( ( 𝐹 : 𝐷 ⟶ ℝ ∧ 𝑋 : 𝐴 ⟶ 𝐷 ) → ( 𝐹 ∘ 𝑋 ) : 𝐴 ⟶ ℝ ) |
| 238 |
2 6 237
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑋 ) : 𝐴 ⟶ ℝ ) |
| 239 |
150 153 238 4 4 155
|
off |
⊢ ( 𝜑 → ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) : 𝐴 ⟶ ℝ ) |
| 240 |
|
fss |
⊢ ( ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) : 𝐴 ⟶ ℂ ) |
| 241 |
239 157 240
|
sylancl |
⊢ ( 𝜑 → ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) : 𝐴 ⟶ ℂ ) |
| 242 |
241
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) : 𝐴 ⟶ ℂ ) |
| 243 |
242 161
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) : ( 𝑘 ∪ { 𝑐 } ) ⟶ ℂ ) |
| 244 |
238
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ∘ 𝑋 ) : 𝐴 ⟶ ℝ ) |
| 245 |
244 164
|
fexd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ∘ 𝑋 ) ∈ V ) |
| 246 |
|
offres |
⊢ ( ( 𝑇 ∈ V ∧ ( 𝐹 ∘ 𝑋 ) ∈ V ) → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) = ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( ( 𝐹 ∘ 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 247 |
165 245 246
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) = ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( ( 𝐹 ∘ 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) |
| 248 |
247
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) supp 0 ) = ( ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( ( 𝐹 ∘ 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) supp 0 ) ) |
| 249 |
|
fss |
⊢ ( ( ( 𝐹 ∘ 𝑋 ) : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∘ 𝑋 ) : 𝐴 ⟶ ℂ ) |
| 250 |
244 157 249
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ∘ 𝑋 ) : 𝐴 ⟶ ℂ ) |
| 251 |
250 161
|
fssresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝐹 ∘ 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) : ( 𝑘 ∪ { 𝑐 } ) ⟶ ℂ ) |
| 252 |
202 204 174 251 144 209
|
suppssof1 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ∘f · ( ( 𝐹 ∘ 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) supp 0 ) ⊆ { 𝑐 } ) |
| 253 |
248 252
|
eqsstrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) supp 0 ) ⊆ { 𝑐 } ) |
| 254 |
140 21 142 144 148 243 253
|
gsumpt |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) = ( ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑐 ) ) |
| 255 |
148
|
fvresd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ‘ 𝑐 ) = ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ‘ 𝑐 ) ) |
| 256 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 257 |
|
fnfco |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑋 : 𝐴 ⟶ 𝐷 ) → ( 𝐹 ∘ 𝑋 ) Fn 𝐴 ) |
| 258 |
256 6 257
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑋 ) Fn 𝐴 ) |
| 259 |
258
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ∘ 𝑋 ) Fn 𝐴 ) |
| 260 |
|
fnfvof |
⊢ ( ( ( 𝑇 Fn 𝐴 ∧ ( 𝐹 ∘ 𝑋 ) Fn 𝐴 ) ∧ ( 𝐴 ∈ Fin ∧ 𝑐 ∈ 𝐴 ) ) → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ‘ 𝑐 ) = ( ( 𝑇 ‘ 𝑐 ) · ( ( 𝐹 ∘ 𝑋 ) ‘ 𝑐 ) ) ) |
| 261 |
214 259 164 216 260
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ‘ 𝑐 ) = ( ( 𝑇 ‘ 𝑐 ) · ( ( 𝐹 ∘ 𝑋 ) ‘ 𝑐 ) ) ) |
| 262 |
|
fvco3 |
⊢ ( ( 𝑋 : 𝐴 ⟶ 𝐷 ∧ 𝑐 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝑋 ) ‘ 𝑐 ) = ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) |
| 263 |
166 216 262
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝐹 ∘ 𝑋 ) ‘ 𝑐 ) = ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) |
| 264 |
263
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ‘ 𝑐 ) · ( ( 𝐹 ∘ 𝑋 ) ‘ 𝑐 ) ) = ( ( 𝑇 ‘ 𝑐 ) · ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) ) |
| 265 |
261 264
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ‘ 𝑐 ) = ( ( 𝑇 ‘ 𝑐 ) · ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) ) |
| 266 |
254 255 265
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) = ( ( 𝑇 ‘ 𝑐 ) · ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) ) |
| 267 |
266 222
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) = ( ( ( 𝑇 ‘ 𝑐 ) · ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) / ( 𝑇 ‘ 𝑐 ) ) ) |
| 268 |
234
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ∈ ℂ ) |
| 269 |
268 225 228
|
divcan3d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ( 𝑇 ‘ 𝑐 ) · ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) / ( 𝑇 ‘ 𝑐 ) ) = ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) |
| 270 |
267 269
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) = ( 𝐹 ‘ ( 𝑋 ‘ 𝑐 ) ) ) |
| 271 |
235 236 270
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( 𝐹 ‘ ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) |
| 272 |
135 232 271
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) |
| 273 |
272
|
a1d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) ∧ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) |
| 274 |
120
|
simprbi |
⊢ ( ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) |
| 275 |
119 274
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → 0 ≤ ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) |
| 276 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∈ ℝ ) → ( 0 ≤ ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ↔ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∨ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 277 |
85 122 276
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( 0 ≤ ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ↔ ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∨ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) ) |
| 278 |
275 277
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ∨ 0 = ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ) |
| 279 |
139 273 278
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) |
| 280 |
92 279
|
embantd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( ( 𝑘 ⊆ 𝐴 → ( 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) |
| 281 |
90 280
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) ∧ ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ) → ( ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) |
| 282 |
281
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) → ( ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) ) |
| 283 |
282
|
com23 |
⊢ ( ( 𝜑 ∧ ¬ 𝑐 ∈ 𝑘 ) → ( ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) ) |
| 284 |
283
|
expcom |
⊢ ( ¬ 𝑐 ∈ 𝑘 → ( 𝜑 → ( ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) ) ) |
| 285 |
284
|
adantl |
⊢ ( ( 𝑘 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑘 ) → ( 𝜑 → ( ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) → ( ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) ) ) |
| 286 |
285
|
a2d |
⊢ ( ( 𝑘 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑘 ) → ( ( 𝜑 → ( ( 𝑘 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝑘 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝑘 ) ) ) } ) ) → ( 𝜑 → ( ( ( 𝑘 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) / ( ℂfld Σg ( 𝑇 ↾ ( 𝑘 ∪ { 𝑐 } ) ) ) ) } ) ) ) ) |
| 287 |
36 52 68 84 89 286
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( ( 𝐴 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } ) ) ) |
| 288 |
4 287
|
mpcom |
⊢ ( 𝜑 → ( ( 𝐴 ⊆ 𝐴 ∧ 0 < ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } ) ) |
| 289 |
15 288
|
mpd |
⊢ ( 𝜑 → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } ) |
| 290 |
156
|
ffnd |
⊢ ( 𝜑 → ( 𝑇 ∘f · 𝑋 ) Fn 𝐴 ) |
| 291 |
|
fnresdm |
⊢ ( ( 𝑇 ∘f · 𝑋 ) Fn 𝐴 → ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) = ( 𝑇 ∘f · 𝑋 ) ) |
| 292 |
290 291
|
syl |
⊢ ( 𝜑 → ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) = ( 𝑇 ∘f · 𝑋 ) ) |
| 293 |
292
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) = ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) ) |
| 294 |
293 12
|
oveq12d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( ( 𝑇 ∘f · 𝑋 ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) = ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ) |
| 295 |
9 258 4 4 155
|
offn |
⊢ ( 𝜑 → ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) Fn 𝐴 ) |
| 296 |
|
fnresdm |
⊢ ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) Fn 𝐴 → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) = ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) |
| 297 |
295 296
|
syl |
⊢ ( 𝜑 → ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) = ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) |
| 298 |
297
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) = ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) ) |
| 299 |
298 12
|
oveq12d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) = ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) ) |
| 300 |
299
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) ) ) |
| 301 |
300
|
rabbidv |
⊢ ( 𝜑 → { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ↾ 𝐴 ) ) / ( ℂfld Σg ( 𝑇 ↾ 𝐴 ) ) ) } = { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) } ) |
| 302 |
289 294 301
|
3eltr3d |
⊢ ( 𝜑 → ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) } ) |
| 303 |
|
fveq2 |
⊢ ( 𝑤 = ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ) ) |
| 304 |
303
|
breq1d |
⊢ ( 𝑤 = ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) → ( ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) ↔ ( 𝐹 ‘ ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) ) ) |
| 305 |
304
|
elrab |
⊢ ( ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ∈ { 𝑤 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑤 ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) } ↔ ( ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ∈ 𝐷 ∧ ( 𝐹 ‘ ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) ) ) |
| 306 |
302 305
|
sylib |
⊢ ( 𝜑 → ( ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ∈ 𝐷 ∧ ( 𝐹 ‘ ( ( ℂfld Σg ( 𝑇 ∘f · 𝑋 ) ) / ( ℂfld Σg 𝑇 ) ) ) ≤ ( ( ℂfld Σg ( 𝑇 ∘f · ( 𝐹 ∘ 𝑋 ) ) ) / ( ℂfld Σg 𝑇 ) ) ) ) |