Metamath Proof Explorer


Theorem jensen

Description: Jensen's inequality, a finite extension of the definition of convexity (the last hypothesis). (Contributed by Mario Carneiro, 21-Jun-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses jensen.1 φ D
jensen.2 φ F : D
jensen.3 φ a D b D a b D
jensen.4 φ A Fin
jensen.5 φ T : A 0 +∞
jensen.6 φ X : A D
jensen.7 φ 0 < fld T
jensen.8 φ x D y D t 0 1 F t x + 1 t y t F x + 1 t F y
Assertion jensen φ fld T × f X fld T D F fld T × f X fld T fld T × f F X fld T

Proof

Step Hyp Ref Expression
1 jensen.1 φ D
2 jensen.2 φ F : D
3 jensen.3 φ a D b D a b D
4 jensen.4 φ A Fin
5 jensen.5 φ T : A 0 +∞
6 jensen.6 φ X : A D
7 jensen.7 φ 0 < fld T
8 jensen.8 φ x D y D t 0 1 F t x + 1 t y t F x + 1 t F y
9 5 ffnd φ T Fn A
10 fnresdm T Fn A T A = T
11 9 10 syl φ T A = T
12 11 oveq2d φ fld T A = fld T
13 7 12 breqtrrd φ 0 < fld T A
14 ssid A A
15 13 14 jctil φ A A 0 < fld T A
16 sseq1 a = a A A
17 reseq2 a = T a = T
18 res0 T =
19 17 18 eqtrdi a = T a =
20 19 oveq2d a = fld T a = fld
21 cnfld0 0 = 0 fld
22 21 gsum0 fld = 0
23 20 22 eqtrdi a = fld T a = 0
24 23 breq2d a = 0 < fld T a 0 < 0
25 16 24 anbi12d a = a A 0 < fld T a A 0 < 0
26 reseq2 a = T × f X a = T × f X
27 26 oveq2d a = fld T × f X a = fld T × f X
28 27 23 oveq12d a = fld T × f X a fld T a = fld T × f X 0
29 reseq2 a = T × f F X a = T × f F X
30 29 oveq2d a = fld T × f F X a = fld T × f F X
31 30 23 oveq12d a = fld T × f F X a fld T a = fld T × f F X 0
32 31 breq2d a = F w fld T × f F X a fld T a F w fld T × f F X 0
33 32 rabbidv a = w D | F w fld T × f F X a fld T a = w D | F w fld T × f F X 0
34 28 33 eleq12d a = fld T × f X a fld T a w D | F w fld T × f F X a fld T a fld T × f X 0 w D | F w fld T × f F X 0
35 25 34 imbi12d a = a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a A 0 < 0 fld T × f X 0 w D | F w fld T × f F X 0
36 35 imbi2d a = φ a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a φ A 0 < 0 fld T × f X 0 w D | F w fld T × f F X 0
37 sseq1 a = k a A k A
38 reseq2 a = k T a = T k
39 38 oveq2d a = k fld T a = fld T k
40 39 breq2d a = k 0 < fld T a 0 < fld T k
41 37 40 anbi12d a = k a A 0 < fld T a k A 0 < fld T k
42 reseq2 a = k T × f X a = T × f X k
43 42 oveq2d a = k fld T × f X a = fld T × f X k
44 43 39 oveq12d a = k fld T × f X a fld T a = fld T × f X k fld T k
45 reseq2 a = k T × f F X a = T × f F X k
46 45 oveq2d a = k fld T × f F X a = fld T × f F X k
47 46 39 oveq12d a = k fld T × f F X a fld T a = fld T × f F X k fld T k
48 47 breq2d a = k F w fld T × f F X a fld T a F w fld T × f F X k fld T k
49 48 rabbidv a = k w D | F w fld T × f F X a fld T a = w D | F w fld T × f F X k fld T k
50 44 49 eleq12d a = k fld T × f X a fld T a w D | F w fld T × f F X a fld T a fld T × f X k fld T k w D | F w fld T × f F X k fld T k
51 41 50 imbi12d a = k a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k
52 51 imbi2d a = k φ a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a φ k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k
53 sseq1 a = k c a A k c A
54 reseq2 a = k c T a = T k c
55 54 oveq2d a = k c fld T a = fld T k c
56 55 breq2d a = k c 0 < fld T a 0 < fld T k c
57 53 56 anbi12d a = k c a A 0 < fld T a k c A 0 < fld T k c
58 reseq2 a = k c T × f X a = T × f X k c
59 58 oveq2d a = k c fld T × f X a = fld T × f X k c
60 59 55 oveq12d a = k c fld T × f X a fld T a = fld T × f X k c fld T k c
61 reseq2 a = k c T × f F X a = T × f F X k c
62 61 oveq2d a = k c fld T × f F X a = fld T × f F X k c
63 62 55 oveq12d a = k c fld T × f F X a fld T a = fld T × f F X k c fld T k c
64 63 breq2d a = k c F w fld T × f F X a fld T a F w fld T × f F X k c fld T k c
65 64 rabbidv a = k c w D | F w fld T × f F X a fld T a = w D | F w fld T × f F X k c fld T k c
66 60 65 eleq12d a = k c fld T × f X a fld T a w D | F w fld T × f F X a fld T a fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
67 57 66 imbi12d a = k c a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a k c A 0 < fld T k c fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
68 67 imbi2d a = k c φ a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a φ k c A 0 < fld T k c fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
69 sseq1 a = A a A A A
70 reseq2 a = A T a = T A
71 70 oveq2d a = A fld T a = fld T A
72 71 breq2d a = A 0 < fld T a 0 < fld T A
73 69 72 anbi12d a = A a A 0 < fld T a A A 0 < fld T A
74 reseq2 a = A T × f X a = T × f X A
75 74 oveq2d a = A fld T × f X a = fld T × f X A
76 75 71 oveq12d a = A fld T × f X a fld T a = fld T × f X A fld T A
77 reseq2 a = A T × f F X a = T × f F X A
78 77 oveq2d a = A fld T × f F X a = fld T × f F X A
79 78 71 oveq12d a = A fld T × f F X a fld T a = fld T × f F X A fld T A
80 79 breq2d a = A F w fld T × f F X a fld T a F w fld T × f F X A fld T A
81 80 rabbidv a = A w D | F w fld T × f F X a fld T a = w D | F w fld T × f F X A fld T A
82 76 81 eleq12d a = A fld T × f X a fld T a w D | F w fld T × f F X a fld T a fld T × f X A fld T A w D | F w fld T × f F X A fld T A
83 73 82 imbi12d a = A a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a A A 0 < fld T A fld T × f X A fld T A w D | F w fld T × f F X A fld T A
84 83 imbi2d a = A φ a A 0 < fld T a fld T × f X a fld T a w D | F w fld T × f F X a fld T a φ A A 0 < fld T A fld T × f X A fld T A w D | F w fld T × f F X A fld T A
85 0re 0
86 85 ltnri ¬ 0 < 0
87 86 pm2.21i 0 < 0 fld T × f X 0 w D | F w fld T × f F X 0
88 87 adantl A 0 < 0 fld T × f X 0 w D | F w fld T × f F X 0
89 88 a1i φ A 0 < 0 fld T × f X 0 w D | F w fld T × f F X 0
90 impexp k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k
91 simprl φ ¬ c k k c A 0 < fld T k c k c A
92 91 unssad φ ¬ c k k c A 0 < fld T k c k A
93 simpr φ ¬ c k k c A 0 < fld T k c 0 < fld T k 0 < fld T k
94 1 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k D
95 2 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k F : D
96 simplll φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k φ
97 96 3 sylan φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k a D b D a b D
98 96 4 syl φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k A Fin
99 96 5 syl φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k T : A 0 +∞
100 96 6 syl φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k X : A D
101 7 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k 0 < fld T
102 96 8 sylan φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k x D y D t 0 1 F t x + 1 t y t F x + 1 t F y
103 simpllr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k ¬ c k
104 91 adantr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k k c A
105 eqid fld T k = fld T k
106 eqid fld T k c = fld T k c
107 cnring fld Ring
108 ringcmn fld Ring fld CMnd
109 107 108 mp1i φ ¬ c k k c A 0 < fld T k c fld CMnd
110 4 ad2antrr φ ¬ c k k c A 0 < fld T k c A Fin
111 110 92 ssfid φ ¬ c k k c A 0 < fld T k c k Fin
112 rege0subm 0 +∞ SubMnd fld
113 112 a1i φ ¬ c k k c A 0 < fld T k c 0 +∞ SubMnd fld
114 5 ad2antrr φ ¬ c k k c A 0 < fld T k c T : A 0 +∞
115 114 92 fssresd φ ¬ c k k c A 0 < fld T k c T k : k 0 +∞
116 c0ex 0 V
117 116 a1i φ ¬ c k k c A 0 < fld T k c 0 V
118 115 111 117 fdmfifsupp φ ¬ c k k c A 0 < fld T k c finSupp 0 T k
119 21 109 111 113 115 118 gsumsubmcl φ ¬ c k k c A 0 < fld T k c fld T k 0 +∞
120 elrege0 fld T k 0 +∞ fld T k 0 fld T k
121 120 simplbi fld T k 0 +∞ fld T k
122 119 121 syl φ ¬ c k k c A 0 < fld T k c fld T k
123 122 adantr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T k
124 simprl φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k 0 < fld T k
125 123 124 elrpd φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T k +
126 simprr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k
127 fveq2 w = fld T × f X k fld T k F w = F fld T × f X k fld T k
128 127 breq1d w = fld T × f X k fld T k F w fld T × f F X k fld T k F fld T × f X k fld T k fld T × f F X k fld T k
129 128 elrab fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k fld T k D F fld T × f X k fld T k fld T × f F X k fld T k
130 126 129 sylib φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k fld T k D F fld T × f X k fld T k fld T × f F X k fld T k
131 130 simpld φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k fld T k D
132 130 simprd φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k F fld T × f X k fld T k fld T × f F X k fld T k
133 94 95 97 98 99 100 101 102 103 104 105 106 125 131 132 jensenlem2 φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c D F fld T × f X k c fld T k c fld T × f F X k c fld T k c
134 fveq2 w = fld T × f X k c fld T k c F w = F fld T × f X k c fld T k c
135 134 breq1d w = fld T × f X k c fld T k c F w fld T × f F X k c fld T k c F fld T × f X k c fld T k c fld T × f F X k c fld T k c
136 135 elrab fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c fld T × f X k c fld T k c D F fld T × f X k c fld T k c fld T × f F X k c fld T k c
137 133 136 sylibr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
138 137 expr φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
139 93 138 embantd φ ¬ c k k c A 0 < fld T k c 0 < fld T k 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
140 cnfldbas = Base fld
141 ringmnd fld Ring fld Mnd
142 107 141 mp1i φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld Mnd
143 110 91 ssfid φ ¬ c k k c A 0 < fld T k c k c Fin
144 143 adantr φ ¬ c k k c A 0 < fld T k c 0 = fld T k k c Fin
145 ssun2 c k c
146 vsnid c c
147 145 146 sselii c k c
148 147 a1i φ ¬ c k k c A 0 < fld T k c 0 = fld T k c k c
149 remulcl x y x y
150 149 adantl φ x y x y
151 rge0ssre 0 +∞
152 fss T : A 0 +∞ 0 +∞ T : A
153 5 151 152 sylancl φ T : A
154 6 1 fssd φ X : A
155 inidm A A = A
156 150 153 154 4 4 155 off φ T × f X : A
157 ax-resscn
158 fss T × f X : A T × f X : A
159 156 157 158 sylancl φ T × f X : A
160 159 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f X : A
161 91 adantr φ ¬ c k k c A 0 < fld T k c 0 = fld T k k c A
162 160 161 fssresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f X k c : k c
163 5 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k T : A 0 +∞
164 110 adantr φ ¬ c k k c A 0 < fld T k c 0 = fld T k A Fin
165 163 164 fexd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T V
166 6 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k X : A D
167 166 164 fexd φ ¬ c k k c A 0 < fld T k c 0 = fld T k X V
168 offres T V X V T × f X k c = T k c × f X k c
169 165 167 168 syl2anc φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f X k c = T k c × f X k c
170 169 oveq1d φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f X k c supp 0 = T k c × f X k c supp 0
171 151 157 sstri 0 +∞
172 fss T : A 0 +∞ 0 +∞ T : A
173 163 171 172 sylancl φ ¬ c k k c A 0 < fld T k c 0 = fld T k T : A
174 173 161 fssresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T k c : k c
175 eldifi x k c c x k c
176 175 adantl φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k c c x k c
177 176 fvresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k c c T k c x = T x
178 difun2 k c c = k c
179 difss k c k
180 178 179 eqsstri k c c k
181 180 sseli x k c c x k
182 simpr φ ¬ c k k c A 0 < fld T k c 0 = fld T k 0 = fld T k
183 92 adantr φ ¬ c k k c A 0 < fld T k c 0 = fld T k k A
184 163 183 feqresmpt φ ¬ c k k c A 0 < fld T k c 0 = fld T k T k = x k T x
185 184 oveq2d φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T k = fld x k T x
186 111 adantr φ ¬ c k k c A 0 < fld T k c 0 = fld T k k Fin
187 183 sselda φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k x A
188 163 ffvelrnda φ ¬ c k k c A 0 < fld T k c 0 = fld T k x A T x 0 +∞
189 187 188 syldan φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x 0 +∞
190 171 189 sseldi φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x
191 186 190 gsumfsum φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld x k T x = x k T x
192 182 185 191 3eqtrrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x = 0
193 elrege0 T x 0 +∞ T x 0 T x
194 189 193 sylib φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x 0 T x
195 194 simpld φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x
196 194 simprd φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k 0 T x
197 186 195 196 fsum00 φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x = 0 x k T x = 0
198 192 197 mpbid φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x = 0
199 198 r19.21bi φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k T x = 0
200 181 199 sylan2 φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k c c T x = 0
201 177 200 eqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k x k c c T k c x = 0
202 174 201 suppss φ ¬ c k k c A 0 < fld T k c 0 = fld T k T k c supp 0 c
203 mul02 x 0 x = 0
204 203 adantl φ ¬ c k k c A 0 < fld T k c 0 = fld T k x 0 x = 0
205 1 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k D
206 205 157 sstrdi φ ¬ c k k c A 0 < fld T k c 0 = fld T k D
207 166 206 fssd φ ¬ c k k c A 0 < fld T k c 0 = fld T k X : A
208 207 161 fssresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k X k c : k c
209 116 a1i φ ¬ c k k c A 0 < fld T k c 0 = fld T k 0 V
210 202 204 174 208 144 209 suppssof1 φ ¬ c k k c A 0 < fld T k c 0 = fld T k T k c × f X k c supp 0 c
211 170 210 eqsstrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f X k c supp 0 c
212 140 21 142 144 148 162 211 gsumpt φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f X k c = T × f X k c c
213 148 fvresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f X k c c = T × f X c
214 163 ffnd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T Fn A
215 166 ffnd φ ¬ c k k c A 0 < fld T k c 0 = fld T k X Fn A
216 161 148 sseldd φ ¬ c k k c A 0 < fld T k c 0 = fld T k c A
217 fnfvof T Fn A X Fn A A Fin c A T × f X c = T c X c
218 214 215 164 216 217 syl22anc φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f X c = T c X c
219 212 213 218 3eqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f X k c = T c X c
220 140 21 142 144 148 174 202 gsumpt φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T k c = T k c c
221 148 fvresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T k c c = T c
222 220 221 eqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T k c = T c
223 219 222 oveq12d φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f X k c fld T k c = T c X c T c
224 207 216 ffvelrnd φ ¬ c k k c A 0 < fld T k c 0 = fld T k X c
225 173 216 ffvelrnd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T c
226 simplrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k 0 < fld T k c
227 226 222 breqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k 0 < T c
228 227 gt0ne0d φ ¬ c k k c A 0 < fld T k c 0 = fld T k T c 0
229 224 225 228 divcan3d φ ¬ c k k c A 0 < fld T k c 0 = fld T k T c X c T c = X c
230 223 229 eqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f X k c fld T k c = X c
231 166 216 ffvelrnd φ ¬ c k k c A 0 < fld T k c 0 = fld T k X c D
232 230 231 eqeltrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f X k c fld T k c D
233 2 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k F : D
234 233 231 ffvelrnd φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X c
235 234 leidd φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X c F X c
236 230 fveq2d φ ¬ c k k c A 0 < fld T k c 0 = fld T k F fld T × f X k c fld T k c = F X c
237 fco F : D X : A D F X : A
238 2 6 237 syl2anc φ F X : A
239 150 153 238 4 4 155 off φ T × f F X : A
240 fss T × f F X : A T × f F X : A
241 239 157 240 sylancl φ T × f F X : A
242 241 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X : A
243 242 161 fssresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X k c : k c
244 238 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X : A
245 244 164 fexd φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X V
246 offres T V F X V T × f F X k c = T k c × f F X k c
247 165 245 246 syl2anc φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X k c = T k c × f F X k c
248 247 oveq1d φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X k c supp 0 = T k c × f F X k c supp 0
249 fss F X : A F X : A
250 244 157 249 sylancl φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X : A
251 250 161 fssresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X k c : k c
252 202 204 174 251 144 209 suppssof1 φ ¬ c k k c A 0 < fld T k c 0 = fld T k T k c × f F X k c supp 0 c
253 248 252 eqsstrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X k c supp 0 c
254 140 21 142 144 148 243 253 gsumpt φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f F X k c = T × f F X k c c
255 148 fvresd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X k c c = T × f F X c
256 2 ffnd φ F Fn D
257 fnfco F Fn D X : A D F X Fn A
258 256 6 257 syl2anc φ F X Fn A
259 258 ad3antrrr φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X Fn A
260 fnfvof T Fn A F X Fn A A Fin c A T × f F X c = T c F X c
261 214 259 164 216 260 syl22anc φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X c = T c F X c
262 fvco3 X : A D c A F X c = F X c
263 166 216 262 syl2anc φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X c = F X c
264 263 oveq2d φ ¬ c k k c A 0 < fld T k c 0 = fld T k T c F X c = T c F X c
265 261 264 eqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k T × f F X c = T c F X c
266 254 255 265 3eqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f F X k c = T c F X c
267 266 222 oveq12d φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f F X k c fld T k c = T c F X c T c
268 234 recnd φ ¬ c k k c A 0 < fld T k c 0 = fld T k F X c
269 268 225 228 divcan3d φ ¬ c k k c A 0 < fld T k c 0 = fld T k T c F X c T c = F X c
270 267 269 eqtrd φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f F X k c fld T k c = F X c
271 235 236 270 3brtr4d φ ¬ c k k c A 0 < fld T k c 0 = fld T k F fld T × f X k c fld T k c fld T × f F X k c fld T k c
272 135 232 271 elrabd φ ¬ c k k c A 0 < fld T k c 0 = fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
273 272 a1d φ ¬ c k k c A 0 < fld T k c 0 = fld T k 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
274 120 simprbi fld T k 0 +∞ 0 fld T k
275 119 274 syl φ ¬ c k k c A 0 < fld T k c 0 fld T k
276 leloe 0 fld T k 0 fld T k 0 < fld T k 0 = fld T k
277 85 122 276 sylancr φ ¬ c k k c A 0 < fld T k c 0 fld T k 0 < fld T k 0 = fld T k
278 275 277 mpbid φ ¬ c k k c A 0 < fld T k c 0 < fld T k 0 = fld T k
279 139 273 278 mpjaodan φ ¬ c k k c A 0 < fld T k c 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
280 92 279 embantd φ ¬ c k k c A 0 < fld T k c k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
281 90 280 syl5bi φ ¬ c k k c A 0 < fld T k c k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
282 281 ex φ ¬ c k k c A 0 < fld T k c k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
283 282 com23 φ ¬ c k k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k k c A 0 < fld T k c fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
284 283 expcom ¬ c k φ k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k k c A 0 < fld T k c fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
285 284 adantl k Fin ¬ c k φ k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k k c A 0 < fld T k c fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
286 285 a2d k Fin ¬ c k φ k A 0 < fld T k fld T × f X k fld T k w D | F w fld T × f F X k fld T k φ k c A 0 < fld T k c fld T × f X k c fld T k c w D | F w fld T × f F X k c fld T k c
287 36 52 68 84 89 286 findcard2s A Fin φ A A 0 < fld T A fld T × f X A fld T A w D | F w fld T × f F X A fld T A
288 4 287 mpcom φ A A 0 < fld T A fld T × f X A fld T A w D | F w fld T × f F X A fld T A
289 15 288 mpd φ fld T × f X A fld T A w D | F w fld T × f F X A fld T A
290 156 ffnd φ T × f X Fn A
291 fnresdm T × f X Fn A T × f X A = T × f X
292 290 291 syl φ T × f X A = T × f X
293 292 oveq2d φ fld T × f X A = fld T × f X
294 293 12 oveq12d φ fld T × f X A fld T A = fld T × f X fld T
295 9 258 4 4 155 offn φ T × f F X Fn A
296 fnresdm T × f F X Fn A T × f F X A = T × f F X
297 295 296 syl φ T × f F X A = T × f F X
298 297 oveq2d φ fld T × f F X A = fld T × f F X
299 298 12 oveq12d φ fld T × f F X A fld T A = fld T × f F X fld T
300 299 breq2d φ F w fld T × f F X A fld T A F w fld T × f F X fld T
301 300 rabbidv φ w D | F w fld T × f F X A fld T A = w D | F w fld T × f F X fld T
302 289 294 301 3eltr3d φ fld T × f X fld T w D | F w fld T × f F X fld T
303 fveq2 w = fld T × f X fld T F w = F fld T × f X fld T
304 303 breq1d w = fld T × f X fld T F w fld T × f F X fld T F fld T × f X fld T fld T × f F X fld T
305 304 elrab fld T × f X fld T w D | F w fld T × f F X fld T fld T × f X fld T D F fld T × f X fld T fld T × f F X fld T
306 302 305 sylib φ fld T × f X fld T D F fld T × f X fld T fld T × f F X fld T