Metamath Proof Explorer


Theorem jensen

Description: Jensen's inequality, a finite extension of the definition of convexity (the last hypothesis). (Contributed by Mario Carneiro, 21-Jun-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses jensen.1 φD
jensen.2 φF:D
jensen.3 φaDbDabD
jensen.4 φAFin
jensen.5 φT:A0+∞
jensen.6 φX:AD
jensen.7 φ0<fldT
jensen.8 φxDyDt01Ftx+1tytFx+1tFy
Assertion jensen φfldT×fXfldTDFfldT×fXfldTfldT×fFXfldT

Proof

Step Hyp Ref Expression
1 jensen.1 φD
2 jensen.2 φF:D
3 jensen.3 φaDbDabD
4 jensen.4 φAFin
5 jensen.5 φT:A0+∞
6 jensen.6 φX:AD
7 jensen.7 φ0<fldT
8 jensen.8 φxDyDt01Ftx+1tytFx+1tFy
9 5 ffnd φTFnA
10 fnresdm TFnATA=T
11 9 10 syl φTA=T
12 11 oveq2d φfldTA=fldT
13 7 12 breqtrrd φ0<fldTA
14 ssid AA
15 13 14 jctil φAA0<fldTA
16 sseq1 a=aAA
17 reseq2 a=Ta=T
18 res0 T=
19 17 18 eqtrdi a=Ta=
20 19 oveq2d a=fldTa=fld
21 cnfld0 0=0fld
22 21 gsum0 fld=0
23 20 22 eqtrdi a=fldTa=0
24 23 breq2d a=0<fldTa0<0
25 16 24 anbi12d a=aA0<fldTaA0<0
26 reseq2 a=T×fXa=T×fX
27 26 oveq2d a=fldT×fXa=fldT×fX
28 27 23 oveq12d a=fldT×fXafldTa=fldT×fX0
29 reseq2 a=T×fFXa=T×fFX
30 29 oveq2d a=fldT×fFXa=fldT×fFX
31 30 23 oveq12d a=fldT×fFXafldTa=fldT×fFX0
32 31 breq2d a=FwfldT×fFXafldTaFwfldT×fFX0
33 32 rabbidv a=wD|FwfldT×fFXafldTa=wD|FwfldT×fFX0
34 28 33 eleq12d a=fldT×fXafldTawD|FwfldT×fFXafldTafldT×fX0wD|FwfldT×fFX0
35 25 34 imbi12d a=aA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTaA0<0fldT×fX0wD|FwfldT×fFX0
36 35 imbi2d a=φaA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTaφA0<0fldT×fX0wD|FwfldT×fFX0
37 sseq1 a=kaAkA
38 reseq2 a=kTa=Tk
39 38 oveq2d a=kfldTa=fldTk
40 39 breq2d a=k0<fldTa0<fldTk
41 37 40 anbi12d a=kaA0<fldTakA0<fldTk
42 reseq2 a=kT×fXa=T×fXk
43 42 oveq2d a=kfldT×fXa=fldT×fXk
44 43 39 oveq12d a=kfldT×fXafldTa=fldT×fXkfldTk
45 reseq2 a=kT×fFXa=T×fFXk
46 45 oveq2d a=kfldT×fFXa=fldT×fFXk
47 46 39 oveq12d a=kfldT×fFXafldTa=fldT×fFXkfldTk
48 47 breq2d a=kFwfldT×fFXafldTaFwfldT×fFXkfldTk
49 48 rabbidv a=kwD|FwfldT×fFXafldTa=wD|FwfldT×fFXkfldTk
50 44 49 eleq12d a=kfldT×fXafldTawD|FwfldT×fFXafldTafldT×fXkfldTkwD|FwfldT×fFXkfldTk
51 41 50 imbi12d a=kaA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTakA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTk
52 51 imbi2d a=kφaA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTaφkA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTk
53 sseq1 a=kcaAkcA
54 reseq2 a=kcTa=Tkc
55 54 oveq2d a=kcfldTa=fldTkc
56 55 breq2d a=kc0<fldTa0<fldTkc
57 53 56 anbi12d a=kcaA0<fldTakcA0<fldTkc
58 reseq2 a=kcT×fXa=T×fXkc
59 58 oveq2d a=kcfldT×fXa=fldT×fXkc
60 59 55 oveq12d a=kcfldT×fXafldTa=fldT×fXkcfldTkc
61 reseq2 a=kcT×fFXa=T×fFXkc
62 61 oveq2d a=kcfldT×fFXa=fldT×fFXkc
63 62 55 oveq12d a=kcfldT×fFXafldTa=fldT×fFXkcfldTkc
64 63 breq2d a=kcFwfldT×fFXafldTaFwfldT×fFXkcfldTkc
65 64 rabbidv a=kcwD|FwfldT×fFXafldTa=wD|FwfldT×fFXkcfldTkc
66 60 65 eleq12d a=kcfldT×fXafldTawD|FwfldT×fFXafldTafldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
67 57 66 imbi12d a=kcaA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTakcA0<fldTkcfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
68 67 imbi2d a=kcφaA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTaφkcA0<fldTkcfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
69 sseq1 a=AaAAA
70 reseq2 a=ATa=TA
71 70 oveq2d a=AfldTa=fldTA
72 71 breq2d a=A0<fldTa0<fldTA
73 69 72 anbi12d a=AaA0<fldTaAA0<fldTA
74 reseq2 a=AT×fXa=T×fXA
75 74 oveq2d a=AfldT×fXa=fldT×fXA
76 75 71 oveq12d a=AfldT×fXafldTa=fldT×fXAfldTA
77 reseq2 a=AT×fFXa=T×fFXA
78 77 oveq2d a=AfldT×fFXa=fldT×fFXA
79 78 71 oveq12d a=AfldT×fFXafldTa=fldT×fFXAfldTA
80 79 breq2d a=AFwfldT×fFXafldTaFwfldT×fFXAfldTA
81 80 rabbidv a=AwD|FwfldT×fFXafldTa=wD|FwfldT×fFXAfldTA
82 76 81 eleq12d a=AfldT×fXafldTawD|FwfldT×fFXafldTafldT×fXAfldTAwD|FwfldT×fFXAfldTA
83 73 82 imbi12d a=AaA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTaAA0<fldTAfldT×fXAfldTAwD|FwfldT×fFXAfldTA
84 83 imbi2d a=AφaA0<fldTafldT×fXafldTawD|FwfldT×fFXafldTaφAA0<fldTAfldT×fXAfldTAwD|FwfldT×fFXAfldTA
85 0re 0
86 85 ltnri ¬0<0
87 86 pm2.21i 0<0fldT×fX0wD|FwfldT×fFX0
88 87 adantl A0<0fldT×fX0wD|FwfldT×fFX0
89 88 a1i φA0<0fldT×fX0wD|FwfldT×fFX0
90 impexp kA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkkA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTk
91 simprl φ¬ckkcA0<fldTkckcA
92 91 unssad φ¬ckkcA0<fldTkckA
93 simpr φ¬ckkcA0<fldTkc0<fldTk0<fldTk
94 1 ad3antrrr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkD
95 2 ad3antrrr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkF:D
96 simplll φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkφ
97 96 3 sylan φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkaDbDabD
98 96 4 syl φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkAFin
99 96 5 syl φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkT:A0+∞
100 96 6 syl φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkX:AD
101 7 ad3antrrr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTk0<fldT
102 96 8 sylan φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkxDyDt01Ftx+1tytFx+1tFy
103 simpllr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTk¬ck
104 91 adantr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkkcA
105 eqid fldTk=fldTk
106 eqid fldTkc=fldTkc
107 cnring fldRing
108 ringcmn fldRingfldCMnd
109 107 108 mp1i φ¬ckkcA0<fldTkcfldCMnd
110 4 ad2antrr φ¬ckkcA0<fldTkcAFin
111 110 92 ssfid φ¬ckkcA0<fldTkckFin
112 rege0subm 0+∞SubMndfld
113 112 a1i φ¬ckkcA0<fldTkc0+∞SubMndfld
114 5 ad2antrr φ¬ckkcA0<fldTkcT:A0+∞
115 114 92 fssresd φ¬ckkcA0<fldTkcTk:k0+∞
116 c0ex 0V
117 116 a1i φ¬ckkcA0<fldTkc0V
118 115 111 117 fdmfifsupp φ¬ckkcA0<fldTkcfinSupp0Tk
119 21 109 111 113 115 118 gsumsubmcl φ¬ckkcA0<fldTkcfldTk0+∞
120 elrege0 fldTk0+∞fldTk0fldTk
121 120 simplbi fldTk0+∞fldTk
122 119 121 syl φ¬ckkcA0<fldTkcfldTk
123 122 adantr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldTk
124 simprl φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTk0<fldTk
125 123 124 elrpd φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldTk+
126 simprr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTk
127 fveq2 w=fldT×fXkfldTkFw=FfldT×fXkfldTk
128 127 breq1d w=fldT×fXkfldTkFwfldT×fFXkfldTkFfldT×fXkfldTkfldT×fFXkfldTk
129 128 elrab fldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkfldTkDFfldT×fXkfldTkfldT×fFXkfldTk
130 126 129 sylib φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkfldTkDFfldT×fXkfldTkfldT×fFXkfldTk
131 130 simpld φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkfldTkD
132 130 simprd φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkFfldT×fXkfldTkfldT×fFXkfldTk
133 94 95 97 98 99 100 101 102 103 104 105 106 125 131 132 jensenlem2 φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcDFfldT×fXkcfldTkcfldT×fFXkcfldTkc
134 fveq2 w=fldT×fXkcfldTkcFw=FfldT×fXkcfldTkc
135 134 breq1d w=fldT×fXkcfldTkcFwfldT×fFXkcfldTkcFfldT×fXkcfldTkcfldT×fFXkcfldTkc
136 135 elrab fldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkcfldT×fXkcfldTkcDFfldT×fXkcfldTkcfldT×fFXkcfldTkc
137 133 136 sylibr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
138 137 expr φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
139 93 138 embantd φ¬ckkcA0<fldTkc0<fldTk0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
140 cnfldbas =Basefld
141 ringmnd fldRingfldMnd
142 107 141 mp1i φ¬ckkcA0<fldTkc0=fldTkfldMnd
143 110 91 ssfid φ¬ckkcA0<fldTkckcFin
144 143 adantr φ¬ckkcA0<fldTkc0=fldTkkcFin
145 ssun2 ckc
146 vsnid cc
147 145 146 sselii ckc
148 147 a1i φ¬ckkcA0<fldTkc0=fldTkckc
149 remulcl xyxy
150 149 adantl φxyxy
151 rge0ssre 0+∞
152 fss T:A0+∞0+∞T:A
153 5 151 152 sylancl φT:A
154 6 1 fssd φX:A
155 inidm AA=A
156 150 153 154 4 4 155 off φT×fX:A
157 ax-resscn
158 fss T×fX:AT×fX:A
159 156 157 158 sylancl φT×fX:A
160 159 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkT×fX:A
161 91 adantr φ¬ckkcA0<fldTkc0=fldTkkcA
162 160 161 fssresd φ¬ckkcA0<fldTkc0=fldTkT×fXkc:kc
163 5 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkT:A0+∞
164 110 adantr φ¬ckkcA0<fldTkc0=fldTkAFin
165 163 164 fexd φ¬ckkcA0<fldTkc0=fldTkTV
166 6 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkX:AD
167 166 164 fexd φ¬ckkcA0<fldTkc0=fldTkXV
168 offres TVXVT×fXkc=Tkc×fXkc
169 165 167 168 syl2anc φ¬ckkcA0<fldTkc0=fldTkT×fXkc=Tkc×fXkc
170 169 oveq1d φ¬ckkcA0<fldTkc0=fldTkT×fXkcsupp0=Tkc×fXkcsupp0
171 151 157 sstri 0+∞
172 fss T:A0+∞0+∞T:A
173 163 171 172 sylancl φ¬ckkcA0<fldTkc0=fldTkT:A
174 173 161 fssresd φ¬ckkcA0<fldTkc0=fldTkTkc:kc
175 eldifi xkccxkc
176 175 adantl φ¬ckkcA0<fldTkc0=fldTkxkccxkc
177 176 fvresd φ¬ckkcA0<fldTkc0=fldTkxkccTkcx=Tx
178 difun2 kcc=kc
179 difss kck
180 178 179 eqsstri kcck
181 180 sseli xkccxk
182 simpr φ¬ckkcA0<fldTkc0=fldTk0=fldTk
183 92 adantr φ¬ckkcA0<fldTkc0=fldTkkA
184 163 183 feqresmpt φ¬ckkcA0<fldTkc0=fldTkTk=xkTx
185 184 oveq2d φ¬ckkcA0<fldTkc0=fldTkfldTk=fldxkTx
186 111 adantr φ¬ckkcA0<fldTkc0=fldTkkFin
187 183 sselda φ¬ckkcA0<fldTkc0=fldTkxkxA
188 163 ffvelcdmda φ¬ckkcA0<fldTkc0=fldTkxATx0+∞
189 187 188 syldan φ¬ckkcA0<fldTkc0=fldTkxkTx0+∞
190 171 189 sselid φ¬ckkcA0<fldTkc0=fldTkxkTx
191 186 190 gsumfsum φ¬ckkcA0<fldTkc0=fldTkfldxkTx=xkTx
192 182 185 191 3eqtrrd φ¬ckkcA0<fldTkc0=fldTkxkTx=0
193 elrege0 Tx0+∞Tx0Tx
194 189 193 sylib φ¬ckkcA0<fldTkc0=fldTkxkTx0Tx
195 194 simpld φ¬ckkcA0<fldTkc0=fldTkxkTx
196 194 simprd φ¬ckkcA0<fldTkc0=fldTkxk0Tx
197 186 195 196 fsum00 φ¬ckkcA0<fldTkc0=fldTkxkTx=0xkTx=0
198 192 197 mpbid φ¬ckkcA0<fldTkc0=fldTkxkTx=0
199 198 r19.21bi φ¬ckkcA0<fldTkc0=fldTkxkTx=0
200 181 199 sylan2 φ¬ckkcA0<fldTkc0=fldTkxkccTx=0
201 177 200 eqtrd φ¬ckkcA0<fldTkc0=fldTkxkccTkcx=0
202 174 201 suppss φ¬ckkcA0<fldTkc0=fldTkTkcsupp0c
203 mul02 x0x=0
204 203 adantl φ¬ckkcA0<fldTkc0=fldTkx0x=0
205 1 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkD
206 205 157 sstrdi φ¬ckkcA0<fldTkc0=fldTkD
207 166 206 fssd φ¬ckkcA0<fldTkc0=fldTkX:A
208 207 161 fssresd φ¬ckkcA0<fldTkc0=fldTkXkc:kc
209 116 a1i φ¬ckkcA0<fldTkc0=fldTk0V
210 202 204 174 208 144 209 suppssof1 φ¬ckkcA0<fldTkc0=fldTkTkc×fXkcsupp0c
211 170 210 eqsstrd φ¬ckkcA0<fldTkc0=fldTkT×fXkcsupp0c
212 140 21 142 144 148 162 211 gsumpt φ¬ckkcA0<fldTkc0=fldTkfldT×fXkc=T×fXkcc
213 148 fvresd φ¬ckkcA0<fldTkc0=fldTkT×fXkcc=T×fXc
214 163 ffnd φ¬ckkcA0<fldTkc0=fldTkTFnA
215 166 ffnd φ¬ckkcA0<fldTkc0=fldTkXFnA
216 161 148 sseldd φ¬ckkcA0<fldTkc0=fldTkcA
217 fnfvof TFnAXFnAAFincAT×fXc=TcXc
218 214 215 164 216 217 syl22anc φ¬ckkcA0<fldTkc0=fldTkT×fXc=TcXc
219 212 213 218 3eqtrd φ¬ckkcA0<fldTkc0=fldTkfldT×fXkc=TcXc
220 140 21 142 144 148 174 202 gsumpt φ¬ckkcA0<fldTkc0=fldTkfldTkc=Tkcc
221 148 fvresd φ¬ckkcA0<fldTkc0=fldTkTkcc=Tc
222 220 221 eqtrd φ¬ckkcA0<fldTkc0=fldTkfldTkc=Tc
223 219 222 oveq12d φ¬ckkcA0<fldTkc0=fldTkfldT×fXkcfldTkc=TcXcTc
224 207 216 ffvelcdmd φ¬ckkcA0<fldTkc0=fldTkXc
225 173 216 ffvelcdmd φ¬ckkcA0<fldTkc0=fldTkTc
226 simplrr φ¬ckkcA0<fldTkc0=fldTk0<fldTkc
227 226 222 breqtrd φ¬ckkcA0<fldTkc0=fldTk0<Tc
228 227 gt0ne0d φ¬ckkcA0<fldTkc0=fldTkTc0
229 224 225 228 divcan3d φ¬ckkcA0<fldTkc0=fldTkTcXcTc=Xc
230 223 229 eqtrd φ¬ckkcA0<fldTkc0=fldTkfldT×fXkcfldTkc=Xc
231 166 216 ffvelcdmd φ¬ckkcA0<fldTkc0=fldTkXcD
232 230 231 eqeltrd φ¬ckkcA0<fldTkc0=fldTkfldT×fXkcfldTkcD
233 2 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkF:D
234 233 231 ffvelcdmd φ¬ckkcA0<fldTkc0=fldTkFXc
235 234 leidd φ¬ckkcA0<fldTkc0=fldTkFXcFXc
236 230 fveq2d φ¬ckkcA0<fldTkc0=fldTkFfldT×fXkcfldTkc=FXc
237 fco F:DX:ADFX:A
238 2 6 237 syl2anc φFX:A
239 150 153 238 4 4 155 off φT×fFX:A
240 fss T×fFX:AT×fFX:A
241 239 157 240 sylancl φT×fFX:A
242 241 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkT×fFX:A
243 242 161 fssresd φ¬ckkcA0<fldTkc0=fldTkT×fFXkc:kc
244 238 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkFX:A
245 244 164 fexd φ¬ckkcA0<fldTkc0=fldTkFXV
246 offres TVFXVT×fFXkc=Tkc×fFXkc
247 165 245 246 syl2anc φ¬ckkcA0<fldTkc0=fldTkT×fFXkc=Tkc×fFXkc
248 247 oveq1d φ¬ckkcA0<fldTkc0=fldTkT×fFXkcsupp0=Tkc×fFXkcsupp0
249 fss FX:AFX:A
250 244 157 249 sylancl φ¬ckkcA0<fldTkc0=fldTkFX:A
251 250 161 fssresd φ¬ckkcA0<fldTkc0=fldTkFXkc:kc
252 202 204 174 251 144 209 suppssof1 φ¬ckkcA0<fldTkc0=fldTkTkc×fFXkcsupp0c
253 248 252 eqsstrd φ¬ckkcA0<fldTkc0=fldTkT×fFXkcsupp0c
254 140 21 142 144 148 243 253 gsumpt φ¬ckkcA0<fldTkc0=fldTkfldT×fFXkc=T×fFXkcc
255 148 fvresd φ¬ckkcA0<fldTkc0=fldTkT×fFXkcc=T×fFXc
256 2 ffnd φFFnD
257 fnfco FFnDX:ADFXFnA
258 256 6 257 syl2anc φFXFnA
259 258 ad3antrrr φ¬ckkcA0<fldTkc0=fldTkFXFnA
260 fnfvof TFnAFXFnAAFincAT×fFXc=TcFXc
261 214 259 164 216 260 syl22anc φ¬ckkcA0<fldTkc0=fldTkT×fFXc=TcFXc
262 fvco3 X:ADcAFXc=FXc
263 166 216 262 syl2anc φ¬ckkcA0<fldTkc0=fldTkFXc=FXc
264 263 oveq2d φ¬ckkcA0<fldTkc0=fldTkTcFXc=TcFXc
265 261 264 eqtrd φ¬ckkcA0<fldTkc0=fldTkT×fFXc=TcFXc
266 254 255 265 3eqtrd φ¬ckkcA0<fldTkc0=fldTkfldT×fFXkc=TcFXc
267 266 222 oveq12d φ¬ckkcA0<fldTkc0=fldTkfldT×fFXkcfldTkc=TcFXcTc
268 234 recnd φ¬ckkcA0<fldTkc0=fldTkFXc
269 268 225 228 divcan3d φ¬ckkcA0<fldTkc0=fldTkTcFXcTc=FXc
270 267 269 eqtrd φ¬ckkcA0<fldTkc0=fldTkfldT×fFXkcfldTkc=FXc
271 235 236 270 3brtr4d φ¬ckkcA0<fldTkc0=fldTkFfldT×fXkcfldTkcfldT×fFXkcfldTkc
272 135 232 271 elrabd φ¬ckkcA0<fldTkc0=fldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
273 272 a1d φ¬ckkcA0<fldTkc0=fldTk0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
274 120 simprbi fldTk0+∞0fldTk
275 119 274 syl φ¬ckkcA0<fldTkc0fldTk
276 leloe 0fldTk0fldTk0<fldTk0=fldTk
277 85 122 276 sylancr φ¬ckkcA0<fldTkc0fldTk0<fldTk0=fldTk
278 275 277 mpbid φ¬ckkcA0<fldTkc0<fldTk0=fldTk
279 139 273 278 mpjaodan φ¬ckkcA0<fldTkc0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
280 92 279 embantd φ¬ckkcA0<fldTkckA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
281 90 280 biimtrid φ¬ckkcA0<fldTkckA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
282 281 ex φ¬ckkcA0<fldTkckA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
283 282 com23 φ¬ckkA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkkcA0<fldTkcfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
284 283 expcom ¬ckφkA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkkcA0<fldTkcfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
285 284 adantl kFin¬ckφkA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkkcA0<fldTkcfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
286 285 a2d kFin¬ckφkA0<fldTkfldT×fXkfldTkwD|FwfldT×fFXkfldTkφkcA0<fldTkcfldT×fXkcfldTkcwD|FwfldT×fFXkcfldTkc
287 36 52 68 84 89 286 findcard2s AFinφAA0<fldTAfldT×fXAfldTAwD|FwfldT×fFXAfldTA
288 4 287 mpcom φAA0<fldTAfldT×fXAfldTAwD|FwfldT×fFXAfldTA
289 15 288 mpd φfldT×fXAfldTAwD|FwfldT×fFXAfldTA
290 156 ffnd φT×fXFnA
291 fnresdm T×fXFnAT×fXA=T×fX
292 290 291 syl φT×fXA=T×fX
293 292 oveq2d φfldT×fXA=fldT×fX
294 293 12 oveq12d φfldT×fXAfldTA=fldT×fXfldT
295 9 258 4 4 155 offn φT×fFXFnA
296 fnresdm T×fFXFnAT×fFXA=T×fFX
297 295 296 syl φT×fFXA=T×fFX
298 297 oveq2d φfldT×fFXA=fldT×fFX
299 298 12 oveq12d φfldT×fFXAfldTA=fldT×fFXfldT
300 299 breq2d φFwfldT×fFXAfldTAFwfldT×fFXfldT
301 300 rabbidv φwD|FwfldT×fFXAfldTA=wD|FwfldT×fFXfldT
302 289 294 301 3eltr3d φfldT×fXfldTwD|FwfldT×fFXfldT
303 fveq2 w=fldT×fXfldTFw=FfldT×fXfldT
304 303 breq1d w=fldT×fXfldTFwfldT×fFXfldTFfldT×fXfldTfldT×fFXfldT
305 304 elrab fldT×fXfldTwD|FwfldT×fFXfldTfldT×fXfldTDFfldT×fXfldTfldT×fFXfldT
306 302 305 sylib φfldT×fXfldTDFfldT×fXfldTfldT×fFXfldT