Metamath Proof Explorer


Theorem rege0subm

Description: The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion rege0subm 0+∞SubMndfld

Proof

Step Hyp Ref Expression
1 rge0ssre 0+∞
2 1 sseli x0+∞x
3 2 recnd x0+∞x
4 ge0addcl x0+∞y0+∞x+y0+∞
5 0e0icopnf 00+∞
6 3 4 5 cnsubmlem 0+∞SubMndfld