Metamath Proof Explorer


Theorem cnsubmlem

Description: Lemma for nn0subm and friends. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses cnsubglem.1 xAx
cnsubglem.2 xAyAx+yA
cnsubmlem.3 0A
Assertion cnsubmlem ASubMndfld

Proof

Step Hyp Ref Expression
1 cnsubglem.1 xAx
2 cnsubglem.2 xAyAx+yA
3 cnsubmlem.3 0A
4 1 ssriv A
5 2 rgen2 xAyAx+yA
6 cnring fldRing
7 ringmnd fldRingfldMnd
8 cnfldbas =Basefld
9 cnfld0 0=0fld
10 cnfldadd +=+fld
11 8 9 10 issubm fldMndASubMndfldA0AxAyAx+yA
12 6 7 11 mp2b ASubMndfldA0AxAyAx+yA
13 4 3 5 12 mpbir3an ASubMndfld