Metamath Proof Explorer


Theorem jensenlem2

Description: Lemma for jensen . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypotheses jensen.1 φD
jensen.2 φF:D
jensen.3 φaDbDabD
jensen.4 φAFin
jensen.5 φT:A0+∞
jensen.6 φX:AD
jensen.7 φ0<fldT
jensen.8 φxDyDt01Ftx+1tytFx+1tFy
jensenlem.1 φ¬zB
jensenlem.2 φBzA
jensenlem.s S=fldTB
jensenlem.l L=fldTBz
jensenlem.3 φS+
jensenlem.4 φfldT×fXBSD
jensenlem.5 φFfldT×fXBSfldT×fFXBS
Assertion jensenlem2 φfldT×fXBzLDFfldT×fXBzLfldT×fFXBzL

Proof

Step Hyp Ref Expression
1 jensen.1 φD
2 jensen.2 φF:D
3 jensen.3 φaDbDabD
4 jensen.4 φAFin
5 jensen.5 φT:A0+∞
6 jensen.6 φX:AD
7 jensen.7 φ0<fldT
8 jensen.8 φxDyDt01Ftx+1tytFx+1tFy
9 jensenlem.1 φ¬zB
10 jensenlem.2 φBzA
11 jensenlem.s S=fldTB
12 jensenlem.l L=fldTBz
13 jensenlem.3 φS+
14 jensenlem.4 φfldT×fXBSD
15 jensenlem.5 φFfldT×fXBSfldT×fFXBS
16 cnfld0 0=0fld
17 cnring fldRing
18 ringabl fldRingfldAbel
19 17 18 mp1i φfldAbel
20 10 unssad φBA
21 4 20 ssfid φBFin
22 resubdrg SubRingfldfldDivRing
23 22 simpli SubRingfld
24 subrgsubg SubRingfldSubGrpfld
25 23 24 mp1i φSubGrpfld
26 remulcl xyxy
27 26 adantl φxyxy
28 rge0ssre 0+∞
29 fss T:A0+∞0+∞T:A
30 5 28 29 sylancl φT:A
31 6 1 fssd φX:A
32 inidm AA=A
33 27 30 31 4 4 32 off φT×fX:A
34 33 20 fssresd φT×fXB:B
35 c0ex 0V
36 35 a1i φ0V
37 34 21 36 fdmfifsupp φfinSupp0T×fXB
38 16 19 21 25 34 37 gsumsubgcl φfldT×fXB
39 38 recnd φfldT×fXB
40 ax-resscn
41 28 40 sstri 0+∞
42 10 unssbd φzA
43 vex zV
44 43 snss zAzA
45 42 44 sylibr φzA
46 5 45 ffvelcdmd φTz0+∞
47 41 46 sselid φTz
48 6 45 ffvelcdmd φXzD
49 1 48 sseldd φXz
50 49 recnd φXz
51 47 50 mulcld φTzXz
52 1 2 3 4 5 6 7 8 9 10 11 12 jensenlem1 φL=S+Tz
53 13 rpred φS
54 elrege0 Tz0+∞Tz0Tz
55 54 simplbi Tz0+∞Tz
56 46 55 syl φTz
57 53 56 readdcld φS+Tz
58 52 57 eqeltrd φL
59 58 recnd φL
60 0red φ0
61 13 rpgt0d φ0<S
62 54 simprbi Tz0+∞0Tz
63 46 62 syl φ0Tz
64 53 56 addge01d φ0TzSS+Tz
65 63 64 mpbid φSS+Tz
66 65 52 breqtrrd φSL
67 60 53 58 61 66 ltletrd φ0<L
68 67 gt0ne0d φL0
69 39 51 59 68 divdird φfldT×fXB+TzXzL=fldT×fXBL+TzXzL
70 cnfldbas =Basefld
71 cnfldadd +=+fld
72 ringcmn fldRingfldCMnd
73 17 72 mp1i φfldCMnd
74 20 sselda φxBxA
75 5 ffvelcdmda φxATx0+∞
76 74 75 syldan φxBTx0+∞
77 41 76 sselid φxBTx
78 1 adantr φxBD
79 6 ffvelcdmda φxAXxD
80 74 79 syldan φxBXxD
81 78 80 sseldd φxBXx
82 81 recnd φxBXx
83 77 82 mulcld φxBTxXx
84 fveq2 x=zTx=Tz
85 fveq2 x=zXx=Xz
86 84 85 oveq12d x=zTxXx=TzXz
87 70 71 73 21 83 45 9 51 86 gsumunsn φfldxBzTxXx=fldxBTxXx+TzXz
88 5 feqmptd φT=xATx
89 6 feqmptd φX=xAXx
90 4 75 79 88 89 offval2 φT×fX=xATxXx
91 90 reseq1d φT×fXBz=xATxXxBz
92 10 resmptd φxATxXxBz=xBzTxXx
93 91 92 eqtrd φT×fXBz=xBzTxXx
94 93 oveq2d φfldT×fXBz=fldxBzTxXx
95 90 reseq1d φT×fXB=xATxXxB
96 20 resmptd φxATxXxB=xBTxXx
97 95 96 eqtrd φT×fXB=xBTxXx
98 97 oveq2d φfldT×fXB=fldxBTxXx
99 98 oveq1d φfldT×fXB+TzXz=fldxBTxXx+TzXz
100 87 94 99 3eqtr4d φfldT×fXBz=fldT×fXB+TzXz
101 100 oveq1d φfldT×fXBzL=fldT×fXB+TzXzL
102 53 recnd φS
103 13 rpne0d φS0
104 39 102 59 103 68 dmdcand φSLfldT×fXBS=fldT×fXBL
105 59 102 59 68 divsubdird φLSL=LLSL
106 102 47 52 mvrladdd φLS=Tz
107 106 oveq1d φLSL=TzL
108 59 68 dividd φLL=1
109 108 oveq1d φLLSL=1SL
110 105 107 109 3eqtr3rd φ1SL=TzL
111 110 oveq1d φ1SLXz=TzLXz
112 47 50 59 68 div23d φTzXzL=TzLXz
113 111 112 eqtr4d φ1SLXz=TzXzL
114 104 113 oveq12d φSLfldT×fXBS+1SLXz=fldT×fXBL+TzXzL
115 69 101 114 3eqtr4d φfldT×fXBzL=SLfldT×fXBS+1SLXz
116 53 58 68 redivcld φSL
117 13 rpge0d φ0S
118 divge0 S0SL0<L0SL
119 53 117 58 67 118 syl22anc φ0SL
120 59 mulridd φL1=L
121 66 120 breqtrrd φSL1
122 1red φ1
123 ledivmul S1L0<LSL1SL1
124 53 122 58 67 123 syl112anc φSL1SL1
125 121 124 mpbird φSL1
126 elicc01 SL01SL0SLSL1
127 116 119 125 126 syl3anbrc φSL01
128 14 48 127 3jca φfldT×fXBSDXzDSL01
129 1 3 cvxcl φfldT×fXBSDXzDSL01SLfldT×fXBS+1SLXzD
130 128 129 mpdan φSLfldT×fXBS+1SLXzD
131 115 130 eqeltrd φfldT×fXBzLD
132 2 130 ffvelcdmd φFSLfldT×fXBS+1SLXz
133 2 14 ffvelcdmd φFfldT×fXBS
134 116 133 remulcld φSLFfldT×fXBS
135 2 48 ffvelcdmd φFXz
136 56 135 remulcld φTzFXz
137 136 58 68 redivcld φTzFXzL
138 134 137 readdcld φSLFfldT×fXBS+TzFXzL
139 fco F:DX:ADFX:A
140 2 6 139 syl2anc φFX:A
141 27 30 140 4 4 32 off φT×fFX:A
142 141 20 fssresd φT×fFXB:B
143 142 21 36 fdmfifsupp φfinSupp0T×fFXB
144 16 19 21 25 142 143 gsumsubgcl φfldT×fFXB
145 144 53 103 redivcld φfldT×fFXBS
146 116 145 remulcld φSLfldT×fFXBS
147 1re 1
148 resubcl 1SL1SL
149 147 116 148 sylancr φ1SL
150 149 135 remulcld φ1SLFXz
151 146 150 readdcld φSLfldT×fFXBS+1SLFXz
152 oveq2 x=fldT×fXBStx=tfldT×fXBS
153 152 fvoveq1d x=fldT×fXBSFtx+1ty=FtfldT×fXBS+1ty
154 fveq2 x=fldT×fXBSFx=FfldT×fXBS
155 154 oveq2d x=fldT×fXBStFx=tFfldT×fXBS
156 155 oveq1d x=fldT×fXBStFx+1tFy=tFfldT×fXBS+1tFy
157 153 156 breq12d x=fldT×fXBSFtx+1tytFx+1tFyFtfldT×fXBS+1tytFfldT×fXBS+1tFy
158 157 imbi2d x=fldT×fXBSφFtx+1tytFx+1tFyφFtfldT×fXBS+1tytFfldT×fXBS+1tFy
159 oveq2 y=Xz1ty=1tXz
160 159 oveq2d y=XztfldT×fXBS+1ty=tfldT×fXBS+1tXz
161 160 fveq2d y=XzFtfldT×fXBS+1ty=FtfldT×fXBS+1tXz
162 fveq2 y=XzFy=FXz
163 162 oveq2d y=Xz1tFy=1tFXz
164 163 oveq2d y=XztFfldT×fXBS+1tFy=tFfldT×fXBS+1tFXz
165 161 164 breq12d y=XzFtfldT×fXBS+1tytFfldT×fXBS+1tFyFtfldT×fXBS+1tXztFfldT×fXBS+1tFXz
166 165 imbi2d y=XzφFtfldT×fXBS+1tytFfldT×fXBS+1tFyφFtfldT×fXBS+1tXztFfldT×fXBS+1tFXz
167 oveq1 t=SLtfldT×fXBS=SLfldT×fXBS
168 oveq2 t=SL1t=1SL
169 168 oveq1d t=SL1tXz=1SLXz
170 167 169 oveq12d t=SLtfldT×fXBS+1tXz=SLfldT×fXBS+1SLXz
171 170 fveq2d t=SLFtfldT×fXBS+1tXz=FSLfldT×fXBS+1SLXz
172 oveq1 t=SLtFfldT×fXBS=SLFfldT×fXBS
173 168 oveq1d t=SL1tFXz=1SLFXz
174 172 173 oveq12d t=SLtFfldT×fXBS+1tFXz=SLFfldT×fXBS+1SLFXz
175 171 174 breq12d t=SLFtfldT×fXBS+1tXztFfldT×fXBS+1tFXzFSLfldT×fXBS+1SLXzSLFfldT×fXBS+1SLFXz
176 175 imbi2d t=SLφFtfldT×fXBS+1tXztFfldT×fXBS+1tFXzφFSLfldT×fXBS+1SLXzSLFfldT×fXBS+1SLFXz
177 8 expcom xDyDt01φFtx+1tytFx+1tFy
178 158 166 176 177 vtocl3ga fldT×fXBSDXzDSL01φFSLfldT×fXBS+1SLXzSLFfldT×fXBS+1SLFXz
179 14 48 127 178 syl3anc φφFSLfldT×fXBS+1SLXzSLFfldT×fXBS+1SLFXz
180 179 pm2.43i φFSLfldT×fXBS+1SLXzSLFfldT×fXBS+1SLFXz
181 110 oveq1d φ1SLFXz=TzLFXz
182 135 recnd φFXz
183 47 182 59 68 div23d φTzFXzL=TzLFXz
184 181 183 eqtr4d φ1SLFXz=TzFXzL
185 184 oveq2d φSLFfldT×fXBS+1SLFXz=SLFfldT×fXBS+TzFXzL
186 180 185 breqtrd φFSLfldT×fXBS+1SLXzSLFfldT×fXBS+TzFXzL
187 183 181 eqtr4d φTzFXzL=1SLFXz
188 187 oveq2d φSLFfldT×fXBS+TzFXzL=SLFfldT×fXBS+1SLFXz
189 53 58 61 67 divgt0d φ0<SL
190 lemul2 FfldT×fXBSfldT×fFXBSSL0<SLFfldT×fXBSfldT×fFXBSSLFfldT×fXBSSLfldT×fFXBS
191 133 145 116 189 190 syl112anc φFfldT×fXBSfldT×fFXBSSLFfldT×fXBSSLfldT×fFXBS
192 15 191 mpbid φSLFfldT×fXBSSLfldT×fFXBS
193 134 146 150 192 leadd1dd φSLFfldT×fXBS+1SLFXzSLfldT×fFXBS+1SLFXz
194 188 193 eqbrtrd φSLFfldT×fXBS+TzFXzLSLfldT×fFXBS+1SLFXz
195 132 138 151 186 194 letrd φFSLfldT×fXBS+1SLXzSLfldT×fFXBS+1SLFXz
196 115 fveq2d φFfldT×fXBzL=FSLfldT×fXBS+1SLXz
197 144 recnd φfldT×fFXB
198 136 recnd φTzFXz
199 197 198 59 68 divdird φfldT×fFXB+TzFXzL=fldT×fFXBL+TzFXzL
200 28 75 sselid φxATx
201 2 ffvelcdmda φXxDFXx
202 79 201 syldan φxAFXx
203 200 202 remulcld φxATxFXx
204 203 recnd φxATxFXx
205 74 204 syldan φxBTxFXx
206 85 fveq2d x=zFXx=FXz
207 84 206 oveq12d x=zTxFXx=TzFXz
208 70 71 73 21 205 45 9 198 207 gsumunsn φfldxBzTxFXx=fldxBTxFXx+TzFXz
209 2 feqmptd φF=yDFy
210 fveq2 y=XxFy=FXx
211 79 89 209 210 fmptco φFX=xAFXx
212 4 75 202 88 211 offval2 φT×fFX=xATxFXx
213 212 reseq1d φT×fFXBz=xATxFXxBz
214 10 resmptd φxATxFXxBz=xBzTxFXx
215 213 214 eqtrd φT×fFXBz=xBzTxFXx
216 215 oveq2d φfldT×fFXBz=fldxBzTxFXx
217 212 reseq1d φT×fFXB=xATxFXxB
218 20 resmptd φxATxFXxB=xBTxFXx
219 217 218 eqtrd φT×fFXB=xBTxFXx
220 219 oveq2d φfldT×fFXB=fldxBTxFXx
221 220 oveq1d φfldT×fFXB+TzFXz=fldxBTxFXx+TzFXz
222 208 216 221 3eqtr4d φfldT×fFXBz=fldT×fFXB+TzFXz
223 222 oveq1d φfldT×fFXBzL=fldT×fFXB+TzFXzL
224 197 102 59 103 68 dmdcand φSLfldT×fFXBS=fldT×fFXBL
225 224 184 oveq12d φSLfldT×fFXBS+1SLFXz=fldT×fFXBL+TzFXzL
226 199 223 225 3eqtr4d φfldT×fFXBzL=SLfldT×fFXBS+1SLFXz
227 195 196 226 3brtr4d φFfldT×fXBzLfldT×fFXBzL
228 131 227 jca φfldT×fXBzLDFfldT×fXBzLfldT×fFXBzL