| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jensen.1 |
|- ( ph -> D C_ RR ) |
| 2 |
|
jensen.2 |
|- ( ph -> F : D --> RR ) |
| 3 |
|
jensen.3 |
|- ( ( ph /\ ( a e. D /\ b e. D ) ) -> ( a [,] b ) C_ D ) |
| 4 |
|
jensen.4 |
|- ( ph -> A e. Fin ) |
| 5 |
|
jensen.5 |
|- ( ph -> T : A --> ( 0 [,) +oo ) ) |
| 6 |
|
jensen.6 |
|- ( ph -> X : A --> D ) |
| 7 |
|
jensen.7 |
|- ( ph -> 0 < ( CCfld gsum T ) ) |
| 8 |
|
jensen.8 |
|- ( ( ph /\ ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) |
| 9 |
|
jensenlem.1 |
|- ( ph -> -. z e. B ) |
| 10 |
|
jensenlem.2 |
|- ( ph -> ( B u. { z } ) C_ A ) |
| 11 |
|
jensenlem.s |
|- S = ( CCfld gsum ( T |` B ) ) |
| 12 |
|
jensenlem.l |
|- L = ( CCfld gsum ( T |` ( B u. { z } ) ) ) |
| 13 |
|
jensenlem.3 |
|- ( ph -> S e. RR+ ) |
| 14 |
|
jensenlem.4 |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D ) |
| 15 |
|
jensenlem.5 |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) |
| 16 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 17 |
|
cnring |
|- CCfld e. Ring |
| 18 |
|
ringabl |
|- ( CCfld e. Ring -> CCfld e. Abel ) |
| 19 |
17 18
|
mp1i |
|- ( ph -> CCfld e. Abel ) |
| 20 |
10
|
unssad |
|- ( ph -> B C_ A ) |
| 21 |
4 20
|
ssfid |
|- ( ph -> B e. Fin ) |
| 22 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 23 |
22
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 24 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
| 25 |
23 24
|
mp1i |
|- ( ph -> RR e. ( SubGrp ` CCfld ) ) |
| 26 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 28 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 29 |
|
fss |
|- ( ( T : A --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> T : A --> RR ) |
| 30 |
5 28 29
|
sylancl |
|- ( ph -> T : A --> RR ) |
| 31 |
6 1
|
fssd |
|- ( ph -> X : A --> RR ) |
| 32 |
|
inidm |
|- ( A i^i A ) = A |
| 33 |
27 30 31 4 4 32
|
off |
|- ( ph -> ( T oF x. X ) : A --> RR ) |
| 34 |
33 20
|
fssresd |
|- ( ph -> ( ( T oF x. X ) |` B ) : B --> RR ) |
| 35 |
|
c0ex |
|- 0 e. _V |
| 36 |
35
|
a1i |
|- ( ph -> 0 e. _V ) |
| 37 |
34 21 36
|
fdmfifsupp |
|- ( ph -> ( ( T oF x. X ) |` B ) finSupp 0 ) |
| 38 |
16 19 21 25 34 37
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) e. CC ) |
| 40 |
|
ax-resscn |
|- RR C_ CC |
| 41 |
28 40
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 42 |
10
|
unssbd |
|- ( ph -> { z } C_ A ) |
| 43 |
|
vex |
|- z e. _V |
| 44 |
43
|
snss |
|- ( z e. A <-> { z } C_ A ) |
| 45 |
42 44
|
sylibr |
|- ( ph -> z e. A ) |
| 46 |
5 45
|
ffvelcdmd |
|- ( ph -> ( T ` z ) e. ( 0 [,) +oo ) ) |
| 47 |
41 46
|
sselid |
|- ( ph -> ( T ` z ) e. CC ) |
| 48 |
6 45
|
ffvelcdmd |
|- ( ph -> ( X ` z ) e. D ) |
| 49 |
1 48
|
sseldd |
|- ( ph -> ( X ` z ) e. RR ) |
| 50 |
49
|
recnd |
|- ( ph -> ( X ` z ) e. CC ) |
| 51 |
47 50
|
mulcld |
|- ( ph -> ( ( T ` z ) x. ( X ` z ) ) e. CC ) |
| 52 |
1 2 3 4 5 6 7 8 9 10 11 12
|
jensenlem1 |
|- ( ph -> L = ( S + ( T ` z ) ) ) |
| 53 |
13
|
rpred |
|- ( ph -> S e. RR ) |
| 54 |
|
elrege0 |
|- ( ( T ` z ) e. ( 0 [,) +oo ) <-> ( ( T ` z ) e. RR /\ 0 <_ ( T ` z ) ) ) |
| 55 |
54
|
simplbi |
|- ( ( T ` z ) e. ( 0 [,) +oo ) -> ( T ` z ) e. RR ) |
| 56 |
46 55
|
syl |
|- ( ph -> ( T ` z ) e. RR ) |
| 57 |
53 56
|
readdcld |
|- ( ph -> ( S + ( T ` z ) ) e. RR ) |
| 58 |
52 57
|
eqeltrd |
|- ( ph -> L e. RR ) |
| 59 |
58
|
recnd |
|- ( ph -> L e. CC ) |
| 60 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 61 |
13
|
rpgt0d |
|- ( ph -> 0 < S ) |
| 62 |
54
|
simprbi |
|- ( ( T ` z ) e. ( 0 [,) +oo ) -> 0 <_ ( T ` z ) ) |
| 63 |
46 62
|
syl |
|- ( ph -> 0 <_ ( T ` z ) ) |
| 64 |
53 56
|
addge01d |
|- ( ph -> ( 0 <_ ( T ` z ) <-> S <_ ( S + ( T ` z ) ) ) ) |
| 65 |
63 64
|
mpbid |
|- ( ph -> S <_ ( S + ( T ` z ) ) ) |
| 66 |
65 52
|
breqtrrd |
|- ( ph -> S <_ L ) |
| 67 |
60 53 58 61 66
|
ltletrd |
|- ( ph -> 0 < L ) |
| 68 |
67
|
gt0ne0d |
|- ( ph -> L =/= 0 ) |
| 69 |
39 51 59 68
|
divdird |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) ) |
| 70 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 71 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 72 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
| 73 |
17 72
|
mp1i |
|- ( ph -> CCfld e. CMnd ) |
| 74 |
20
|
sselda |
|- ( ( ph /\ x e. B ) -> x e. A ) |
| 75 |
5
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( T ` x ) e. ( 0 [,) +oo ) ) |
| 76 |
74 75
|
syldan |
|- ( ( ph /\ x e. B ) -> ( T ` x ) e. ( 0 [,) +oo ) ) |
| 77 |
41 76
|
sselid |
|- ( ( ph /\ x e. B ) -> ( T ` x ) e. CC ) |
| 78 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> D C_ RR ) |
| 79 |
6
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( X ` x ) e. D ) |
| 80 |
74 79
|
syldan |
|- ( ( ph /\ x e. B ) -> ( X ` x ) e. D ) |
| 81 |
78 80
|
sseldd |
|- ( ( ph /\ x e. B ) -> ( X ` x ) e. RR ) |
| 82 |
81
|
recnd |
|- ( ( ph /\ x e. B ) -> ( X ` x ) e. CC ) |
| 83 |
77 82
|
mulcld |
|- ( ( ph /\ x e. B ) -> ( ( T ` x ) x. ( X ` x ) ) e. CC ) |
| 84 |
|
fveq2 |
|- ( x = z -> ( T ` x ) = ( T ` z ) ) |
| 85 |
|
fveq2 |
|- ( x = z -> ( X ` x ) = ( X ` z ) ) |
| 86 |
84 85
|
oveq12d |
|- ( x = z -> ( ( T ` x ) x. ( X ` x ) ) = ( ( T ` z ) x. ( X ` z ) ) ) |
| 87 |
70 71 73 21 83 45 9 51 86
|
gsumunsn |
|- ( ph -> ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) + ( ( T ` z ) x. ( X ` z ) ) ) ) |
| 88 |
5
|
feqmptd |
|- ( ph -> T = ( x e. A |-> ( T ` x ) ) ) |
| 89 |
6
|
feqmptd |
|- ( ph -> X = ( x e. A |-> ( X ` x ) ) ) |
| 90 |
4 75 79 88 89
|
offval2 |
|- ( ph -> ( T oF x. X ) = ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
| 91 |
90
|
reseq1d |
|- ( ph -> ( ( T oF x. X ) |` ( B u. { z } ) ) = ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` ( B u. { z } ) ) ) |
| 92 |
10
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
| 93 |
91 92
|
eqtrd |
|- ( ph -> ( ( T oF x. X ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
| 94 |
93
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) = ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) ) |
| 95 |
90
|
reseq1d |
|- ( ph -> ( ( T oF x. X ) |` B ) = ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` B ) ) |
| 96 |
20
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
| 97 |
95 96
|
eqtrd |
|- ( ph -> ( ( T oF x. X ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
| 98 |
97
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) = ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) ) |
| 99 |
98
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) + ( ( T ` z ) x. ( X ` z ) ) ) ) |
| 100 |
87 94 99
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) ) |
| 101 |
100
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) / L ) ) |
| 102 |
53
|
recnd |
|- ( ph -> S e. CC ) |
| 103 |
13
|
rpne0d |
|- ( ph -> S =/= 0 ) |
| 104 |
39 102 59 103 68
|
dmdcand |
|- ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) ) |
| 105 |
59 102 59 68
|
divsubdird |
|- ( ph -> ( ( L - S ) / L ) = ( ( L / L ) - ( S / L ) ) ) |
| 106 |
102 47 52
|
mvrladdd |
|- ( ph -> ( L - S ) = ( T ` z ) ) |
| 107 |
106
|
oveq1d |
|- ( ph -> ( ( L - S ) / L ) = ( ( T ` z ) / L ) ) |
| 108 |
59 68
|
dividd |
|- ( ph -> ( L / L ) = 1 ) |
| 109 |
108
|
oveq1d |
|- ( ph -> ( ( L / L ) - ( S / L ) ) = ( 1 - ( S / L ) ) ) |
| 110 |
105 107 109
|
3eqtr3rd |
|- ( ph -> ( 1 - ( S / L ) ) = ( ( T ` z ) / L ) ) |
| 111 |
110
|
oveq1d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( X ` z ) ) = ( ( ( T ` z ) / L ) x. ( X ` z ) ) ) |
| 112 |
47 50 59 68
|
div23d |
|- ( ph -> ( ( ( T ` z ) x. ( X ` z ) ) / L ) = ( ( ( T ` z ) / L ) x. ( X ` z ) ) ) |
| 113 |
111 112
|
eqtr4d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( X ` z ) ) = ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) |
| 114 |
104 113
|
oveq12d |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) ) |
| 115 |
69 101 114
|
3eqtr4d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) |
| 116 |
53 58 68
|
redivcld |
|- ( ph -> ( S / L ) e. RR ) |
| 117 |
13
|
rpge0d |
|- ( ph -> 0 <_ S ) |
| 118 |
|
divge0 |
|- ( ( ( S e. RR /\ 0 <_ S ) /\ ( L e. RR /\ 0 < L ) ) -> 0 <_ ( S / L ) ) |
| 119 |
53 117 58 67 118
|
syl22anc |
|- ( ph -> 0 <_ ( S / L ) ) |
| 120 |
59
|
mulridd |
|- ( ph -> ( L x. 1 ) = L ) |
| 121 |
66 120
|
breqtrrd |
|- ( ph -> S <_ ( L x. 1 ) ) |
| 122 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 123 |
|
ledivmul |
|- ( ( S e. RR /\ 1 e. RR /\ ( L e. RR /\ 0 < L ) ) -> ( ( S / L ) <_ 1 <-> S <_ ( L x. 1 ) ) ) |
| 124 |
53 122 58 67 123
|
syl112anc |
|- ( ph -> ( ( S / L ) <_ 1 <-> S <_ ( L x. 1 ) ) ) |
| 125 |
121 124
|
mpbird |
|- ( ph -> ( S / L ) <_ 1 ) |
| 126 |
|
elicc01 |
|- ( ( S / L ) e. ( 0 [,] 1 ) <-> ( ( S / L ) e. RR /\ 0 <_ ( S / L ) /\ ( S / L ) <_ 1 ) ) |
| 127 |
116 119 125 126
|
syl3anbrc |
|- ( ph -> ( S / L ) e. ( 0 [,] 1 ) ) |
| 128 |
14 48 127
|
3jca |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) ) |
| 129 |
1 3
|
cvxcl |
|- ( ( ph /\ ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) ) -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) e. D ) |
| 130 |
128 129
|
mpdan |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) e. D ) |
| 131 |
115 130
|
eqeltrd |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) e. D ) |
| 132 |
2 130
|
ffvelcdmd |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) e. RR ) |
| 133 |
2 14
|
ffvelcdmd |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) e. RR ) |
| 134 |
116 133
|
remulcld |
|- ( ph -> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) e. RR ) |
| 135 |
2 48
|
ffvelcdmd |
|- ( ph -> ( F ` ( X ` z ) ) e. RR ) |
| 136 |
56 135
|
remulcld |
|- ( ph -> ( ( T ` z ) x. ( F ` ( X ` z ) ) ) e. RR ) |
| 137 |
136 58 68
|
redivcld |
|- ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) e. RR ) |
| 138 |
134 137
|
readdcld |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) e. RR ) |
| 139 |
|
fco |
|- ( ( F : D --> RR /\ X : A --> D ) -> ( F o. X ) : A --> RR ) |
| 140 |
2 6 139
|
syl2anc |
|- ( ph -> ( F o. X ) : A --> RR ) |
| 141 |
27 30 140 4 4 32
|
off |
|- ( ph -> ( T oF x. ( F o. X ) ) : A --> RR ) |
| 142 |
141 20
|
fssresd |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) : B --> RR ) |
| 143 |
142 21 36
|
fdmfifsupp |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) finSupp 0 ) |
| 144 |
16 19 21 25 142 143
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) e. RR ) |
| 145 |
144 53 103
|
redivcld |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) e. RR ) |
| 146 |
116 145
|
remulcld |
|- ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) e. RR ) |
| 147 |
|
1re |
|- 1 e. RR |
| 148 |
|
resubcl |
|- ( ( 1 e. RR /\ ( S / L ) e. RR ) -> ( 1 - ( S / L ) ) e. RR ) |
| 149 |
147 116 148
|
sylancr |
|- ( ph -> ( 1 - ( S / L ) ) e. RR ) |
| 150 |
149 135
|
remulcld |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) e. RR ) |
| 151 |
146 150
|
readdcld |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) e. RR ) |
| 152 |
|
oveq2 |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( t x. x ) = ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) |
| 153 |
152
|
fvoveq1d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) ) |
| 154 |
|
fveq2 |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( F ` x ) = ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) |
| 155 |
154
|
oveq2d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( t x. ( F ` x ) ) = ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) ) |
| 156 |
155
|
oveq1d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) = ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) |
| 157 |
153 156
|
breq12d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) <-> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) ) |
| 158 |
157
|
imbi2d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( ph -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) <-> ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) ) ) |
| 159 |
|
oveq2 |
|- ( y = ( X ` z ) -> ( ( 1 - t ) x. y ) = ( ( 1 - t ) x. ( X ` z ) ) ) |
| 160 |
159
|
oveq2d |
|- ( y = ( X ` z ) -> ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) = ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) |
| 161 |
160
|
fveq2d |
|- ( y = ( X ` z ) -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) = ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) ) |
| 162 |
|
fveq2 |
|- ( y = ( X ` z ) -> ( F ` y ) = ( F ` ( X ` z ) ) ) |
| 163 |
162
|
oveq2d |
|- ( y = ( X ` z ) -> ( ( 1 - t ) x. ( F ` y ) ) = ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) |
| 164 |
163
|
oveq2d |
|- ( y = ( X ` z ) -> ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) = ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) |
| 165 |
161 164
|
breq12d |
|- ( y = ( X ` z ) -> ( ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) <-> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) ) |
| 166 |
165
|
imbi2d |
|- ( y = ( X ` z ) -> ( ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) <-> ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) ) ) |
| 167 |
|
oveq1 |
|- ( t = ( S / L ) -> ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) = ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) |
| 168 |
|
oveq2 |
|- ( t = ( S / L ) -> ( 1 - t ) = ( 1 - ( S / L ) ) ) |
| 169 |
168
|
oveq1d |
|- ( t = ( S / L ) -> ( ( 1 - t ) x. ( X ` z ) ) = ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) |
| 170 |
167 169
|
oveq12d |
|- ( t = ( S / L ) -> ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) |
| 171 |
170
|
fveq2d |
|- ( t = ( S / L ) -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) = ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) ) |
| 172 |
|
oveq1 |
|- ( t = ( S / L ) -> ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) = ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) ) |
| 173 |
168
|
oveq1d |
|- ( t = ( S / L ) -> ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) = ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) |
| 174 |
172 173
|
oveq12d |
|- ( t = ( S / L ) -> ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
| 175 |
171 174
|
breq12d |
|- ( t = ( S / L ) -> ( ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) <-> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) |
| 176 |
175
|
imbi2d |
|- ( t = ( S / L ) -> ( ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) <-> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) ) |
| 177 |
8
|
expcom |
|- ( ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) -> ( ph -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) ) |
| 178 |
158 166 176 177
|
vtocl3ga |
|- ( ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) -> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) |
| 179 |
14 48 127 178
|
syl3anc |
|- ( ph -> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) |
| 180 |
179
|
pm2.43i |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
| 181 |
110
|
oveq1d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) = ( ( ( T ` z ) / L ) x. ( F ` ( X ` z ) ) ) ) |
| 182 |
135
|
recnd |
|- ( ph -> ( F ` ( X ` z ) ) e. CC ) |
| 183 |
47 182 59 68
|
div23d |
|- ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) = ( ( ( T ` z ) / L ) x. ( F ` ( X ` z ) ) ) ) |
| 184 |
181 183
|
eqtr4d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) = ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) |
| 185 |
184
|
oveq2d |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
| 186 |
180 185
|
breqtrd |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
| 187 |
183 181
|
eqtr4d |
|- ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) = ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) |
| 188 |
187
|
oveq2d |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
| 189 |
53 58 61 67
|
divgt0d |
|- ( ph -> 0 < ( S / L ) ) |
| 190 |
|
lemul2 |
|- ( ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) e. RR /\ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) e. RR /\ ( ( S / L ) e. RR /\ 0 < ( S / L ) ) ) -> ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) <-> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) ) |
| 191 |
133 145 116 189 190
|
syl112anc |
|- ( ph -> ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) <-> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) ) |
| 192 |
15 191
|
mpbid |
|- ( ph -> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) |
| 193 |
134 146 150 192
|
leadd1dd |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
| 194 |
188 193
|
eqbrtrd |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
| 195 |
132 138 151 186 194
|
letrd |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
| 196 |
115
|
fveq2d |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) = ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) ) |
| 197 |
144
|
recnd |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) e. CC ) |
| 198 |
136
|
recnd |
|- ( ph -> ( ( T ` z ) x. ( F ` ( X ` z ) ) ) e. CC ) |
| 199 |
197 198 59 68
|
divdird |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
| 200 |
28 75
|
sselid |
|- ( ( ph /\ x e. A ) -> ( T ` x ) e. RR ) |
| 201 |
2
|
ffvelcdmda |
|- ( ( ph /\ ( X ` x ) e. D ) -> ( F ` ( X ` x ) ) e. RR ) |
| 202 |
79 201
|
syldan |
|- ( ( ph /\ x e. A ) -> ( F ` ( X ` x ) ) e. RR ) |
| 203 |
200 202
|
remulcld |
|- ( ( ph /\ x e. A ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. RR ) |
| 204 |
203
|
recnd |
|- ( ( ph /\ x e. A ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. CC ) |
| 205 |
74 204
|
syldan |
|- ( ( ph /\ x e. B ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. CC ) |
| 206 |
85
|
fveq2d |
|- ( x = z -> ( F ` ( X ` x ) ) = ( F ` ( X ` z ) ) ) |
| 207 |
84 206
|
oveq12d |
|- ( x = z -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) = ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) |
| 208 |
70 71 73 21 205 45 9 198 207
|
gsumunsn |
|- ( ph -> ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) ) |
| 209 |
2
|
feqmptd |
|- ( ph -> F = ( y e. D |-> ( F ` y ) ) ) |
| 210 |
|
fveq2 |
|- ( y = ( X ` x ) -> ( F ` y ) = ( F ` ( X ` x ) ) ) |
| 211 |
79 89 209 210
|
fmptco |
|- ( ph -> ( F o. X ) = ( x e. A |-> ( F ` ( X ` x ) ) ) ) |
| 212 |
4 75 202 88 211
|
offval2 |
|- ( ph -> ( T oF x. ( F o. X ) ) = ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
| 213 |
212
|
reseq1d |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) = ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` ( B u. { z } ) ) ) |
| 214 |
10
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
| 215 |
213 214
|
eqtrd |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
| 216 |
215
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) = ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) ) |
| 217 |
212
|
reseq1d |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) = ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` B ) ) |
| 218 |
20
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
| 219 |
217 218
|
eqtrd |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
| 220 |
219
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) = ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) ) |
| 221 |
220
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) ) |
| 222 |
208 216 221
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) ) |
| 223 |
222
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) / L ) ) |
| 224 |
197 102 59 103 68
|
dmdcand |
|- ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) ) |
| 225 |
224 184
|
oveq12d |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
| 226 |
199 223 225
|
3eqtr4d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
| 227 |
195 196 226
|
3brtr4d |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) ) |
| 228 |
131 227
|
jca |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) ) ) |