| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvxcl.1 |
|
| 2 |
|
cvxcl.2 |
|
| 3 |
2
|
ralrimivva |
|
| 4 |
3
|
ad2antrr |
|
| 5 |
|
simpr1 |
|
| 6 |
|
simpr2 |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
sseq1d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
sseq1d |
|
| 11 |
8 10
|
rspc2v |
|
| 12 |
5 6 11
|
syl2anc |
|
| 13 |
12
|
adantr |
|
| 14 |
4 13
|
mpd |
|
| 15 |
|
ax-1cn |
|
| 16 |
|
unitssre |
|
| 17 |
|
simpr3 |
|
| 18 |
16 17
|
sselid |
|
| 19 |
18
|
recnd |
|
| 20 |
|
nncan |
|
| 21 |
15 19 20
|
sylancr |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
oveq1d |
|
| 24 |
23
|
adantr |
|
| 25 |
1
|
adantr |
|
| 26 |
25 5
|
sseldd |
|
| 27 |
26
|
adantr |
|
| 28 |
25 6
|
sseldd |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
|
simplr3 |
|
| 32 |
|
iirev |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
lincmb01cmp |
|
| 35 |
27 29 30 33 34
|
syl31anc |
|
| 36 |
24 35
|
eqeltrrd |
|
| 37 |
14 36
|
sseldd |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
pncan3 |
|
| 41 |
19 15 40
|
sylancl |
|
| 42 |
41
|
oveq1d |
|
| 43 |
|
1re |
|
| 44 |
|
resubcl |
|
| 45 |
43 18 44
|
sylancr |
|
| 46 |
45
|
recnd |
|
| 47 |
28
|
recnd |
|
| 48 |
19 46 47
|
adddird |
|
| 49 |
47
|
mullidd |
|
| 50 |
42 48 49
|
3eqtr3d |
|
| 51 |
39 50
|
sylan9eqr |
|
| 52 |
6
|
adantr |
|
| 53 |
51 52
|
eqeltrd |
|
| 54 |
3
|
ad2antrr |
|
| 55 |
|
oveq1 |
|
| 56 |
55
|
sseq1d |
|
| 57 |
|
oveq2 |
|
| 58 |
57
|
sseq1d |
|
| 59 |
56 58
|
rspc2v |
|
| 60 |
6 5 59
|
syl2anc |
|
| 61 |
60
|
adantr |
|
| 62 |
54 61
|
mpd |
|
| 63 |
26
|
recnd |
|
| 64 |
19 63
|
mulcld |
|
| 65 |
46 47
|
mulcld |
|
| 66 |
64 65
|
addcomd |
|
| 67 |
66
|
adantr |
|
| 68 |
28
|
adantr |
|
| 69 |
26
|
adantr |
|
| 70 |
|
simpr |
|
| 71 |
|
simplr3 |
|
| 72 |
|
lincmb01cmp |
|
| 73 |
68 69 70 71 72
|
syl31anc |
|
| 74 |
67 73
|
eqeltrd |
|
| 75 |
62 74
|
sseldd |
|
| 76 |
26 28
|
lttri4d |
|
| 77 |
37 53 75 76
|
mpjao3dan |
|