| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumge0.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fsumge0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 3 |
|
fsumge0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → 𝐴 ∈ Fin ) |
| 5 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 6 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 7 |
|
snssi |
⊢ ( 𝑚 ∈ 𝐴 → { 𝑚 } ⊆ 𝐴 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → { 𝑚 } ⊆ 𝐴 ) |
| 9 |
4 5 6 8
|
fsumless |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 10 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐴 ) |
| 12 |
2 3
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) → ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 15 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 16 |
15
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
| 19 |
17 18 15
|
nfbr |
⊢ Ⅎ 𝑘 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 20 |
16 19
|
nfan |
⊢ Ⅎ 𝑘 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 21 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
| 23 |
21
|
breq2d |
⊢ ( 𝑘 = 𝑚 → ( 0 ≤ 𝐵 ↔ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 24 |
22 23
|
anbi12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 25 |
20 24
|
rspc |
⊢ ( 𝑚 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 26 |
14 25
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 27 |
26
|
simpld |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 28 |
27
|
recnd |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 29 |
|
sumsns |
⊢ ( ( 𝑚 ∈ 𝐴 ∧ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 30 |
11 28 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ { 𝑚 } 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 32 |
10 30 31
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ≤ 0 ) |
| 33 |
26
|
simprd |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 34 |
|
0re |
⊢ 0 ∈ ℝ |
| 35 |
|
letri3 |
⊢ ( ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ≤ 0 ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 36 |
27 34 35
|
sylancl |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ≤ 0 ∧ 0 ≤ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 37 |
32 33 36
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ∧ 𝑚 ∈ 𝐴 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) |
| 38 |
37
|
ralrimiva |
⊢ ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) → ∀ 𝑚 ∈ 𝐴 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑚 𝐵 = 0 |
| 40 |
15
|
nfeq1 |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 |
| 41 |
21
|
eqeq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 = 0 ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) ) |
| 42 |
39 40 41
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀ 𝑚 ∈ 𝐴 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = 0 ) |
| 43 |
38 42
|
sylibr |
⊢ ( ( 𝜑 ∧ Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) → ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 44 |
43
|
ex |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 = 0 → ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 45 |
|
sumz |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝐴 ∈ Fin ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 46 |
45
|
olcs |
⊢ ( 𝐴 ∈ Fin → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 47 |
|
sumeq2 |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 0 ) |
| 48 |
47
|
eqeq1d |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → ( Σ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ Σ 𝑘 ∈ 𝐴 0 = 0 ) ) |
| 49 |
46 48
|
syl5ibrcom |
⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 50 |
1 49
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 𝐵 = 0 → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 51 |
44 50
|
impbid |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∀ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |