| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scvxcvx.1 | ⊢ ( 𝜑  →  𝐷  ⊆  ℝ ) | 
						
							| 2 |  | scvxcvx.2 | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 3 |  | scvxcvx.3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐷  ∧  𝑏  ∈  𝐷 ) )  →  ( 𝑎 [,] 𝑏 )  ⊆  𝐷 ) | 
						
							| 4 |  | scvxcvx.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑥  <  𝑦 )  ∧  𝑡  ∈  ( 0 (,) 1 ) )  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 5 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝐷  ⊆  ℝ ) | 
						
							| 6 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑋  ∈  𝐷 ) | 
						
							| 7 | 5 6 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 9 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑌  ∈  𝐷 ) | 
						
							| 10 | 5 9 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑌  ∈  ℝ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝑌  ∈  ℝ ) | 
						
							| 12 | 8 11 | lttri4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝑋  <  𝑌  ∨  𝑋  =  𝑌  ∨  𝑌  <  𝑋 ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡  ·  𝑋 )  =  ( 𝑇  ·  𝑋 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑡  =  𝑇  →  ( 1  −  𝑡 )  =  ( 1  −  𝑇 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( 1  −  𝑡 )  ·  𝑌 )  =  ( ( 1  −  𝑇 )  ·  𝑌 ) ) | 
						
							| 16 | 13 15 | oveq12d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) )  =  ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝑡  =  𝑇  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  =  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 19 | 14 | oveq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) )  =  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 21 | 17 20 | breq12d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ↔  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 22 | 6 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  𝑋  ∈  𝐷 ) | 
						
							| 23 | 9 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  𝑌  ∈  𝐷 ) | 
						
							| 24 | 22 23 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 ) ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  𝑋  <  𝑌 ) | 
						
							| 26 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  𝜑 ) | 
						
							| 27 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  <  𝑦  ↔  𝑋  <  𝑦 ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑡  ·  𝑥 )  =  ( 𝑡  ·  𝑋 ) ) | 
						
							| 29 | 28 | fvoveq1d | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  =  ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 33 | 29 32 | breq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 35 | 34 | imbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 36 | 27 35 | imbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  <  𝑦  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) )  ↔  ( 𝑋  <  𝑦  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 37 |  | breq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  <  𝑦  ↔  𝑋  <  𝑌 ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑦  =  𝑌  →  ( ( 1  −  𝑡 )  ·  𝑦 )  =  ( ( 1  −  𝑡 )  ·  𝑌 ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) )  =  ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( 𝑦  =  𝑌  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  =  ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 44 | 40 43 | breq12d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 45 | 44 | ralbidv | ⊢ ( 𝑦  =  𝑌  →  ( ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 46 | 45 | imbi2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 47 | 37 46 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑋  <  𝑦  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) )  ↔  ( 𝑋  <  𝑌  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) ) | 
						
							| 48 | 4 | 3expia | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑥  <  𝑦 ) )  →  ( 𝑡  ∈  ( 0 (,) 1 )  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 49 | 48 | ralrimiv | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑥  <  𝑦 ) )  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 50 | 49 | expcom | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷  ∧  𝑥  <  𝑦 )  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 51 | 50 | 3expia | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  ( 𝑥  <  𝑦  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 52 | 36 47 51 | vtocl2ga | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 )  →  ( 𝑋  <  𝑌  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 53 | 24 25 26 52 | syl3c | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑋 )  +  ( ( 1  −  𝑡 )  ·  𝑌 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 54 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  𝑇  ∈  ( 0 (,) 1 ) ) | 
						
							| 55 | 21 53 54 | rspcdva | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 56 | 55 | orcd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑋  <  𝑌 ) )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 57 | 56 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝑋  <  𝑌  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 58 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 59 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑇  ∈  ( 0 [,] 1 ) ) | 
						
							| 60 | 58 59 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 61 | 60 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑇  ∈  ℂ ) | 
						
							| 62 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 63 |  | pncan3 | ⊢ ( ( 𝑇  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑇  +  ( 1  −  𝑇 ) )  =  1 ) | 
						
							| 64 | 61 62 63 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  +  ( 1  −  𝑇 ) )  =  1 ) | 
						
							| 65 | 64 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  +  ( 1  −  𝑇 ) )  ·  𝑌 )  =  ( 1  ·  𝑌 ) ) | 
						
							| 66 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 67 | 62 61 66 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 68 | 10 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑌  ∈  ℂ ) | 
						
							| 69 | 61 67 68 | adddird | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  +  ( 1  −  𝑇 ) )  ·  𝑌 )  =  ( ( 𝑇  ·  𝑌 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) ) | 
						
							| 70 | 68 | mullidd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 1  ·  𝑌 )  =  𝑌 ) | 
						
							| 71 | 65 69 70 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  ·  𝑌 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) )  =  𝑌 ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑌 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 73 | 64 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  +  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑌 ) )  =  ( 1  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 74 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 75 | 74 9 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ 𝑌 )  ∈  ℝ ) | 
						
							| 76 | 75 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ 𝑌 )  ∈  ℂ ) | 
						
							| 77 | 61 67 76 | adddird | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  +  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑌 ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 78 | 76 | mullidd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 1  ·  ( 𝐹 ‘ 𝑌 ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 79 | 73 77 78 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 80 | 72 79 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑌 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑌 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 82 |  | oveq2 | ⊢ ( 𝑋  =  𝑌  →  ( 𝑇  ·  𝑋 )  =  ( 𝑇  ·  𝑌 ) ) | 
						
							| 83 | 82 | fvoveq1d | ⊢ ( 𝑋  =  𝑌  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( 𝐹 ‘ ( ( 𝑇  ·  𝑌 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) ) ) | 
						
							| 84 |  | fveq2 | ⊢ ( 𝑋  =  𝑌  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( 𝑋  =  𝑌  →  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝑇  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 86 | 85 | oveq1d | ⊢ ( 𝑋  =  𝑌  →  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 87 | 83 86 | eqeq12d | ⊢ ( 𝑋  =  𝑌  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ↔  ( 𝐹 ‘ ( ( 𝑇  ·  𝑌 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 88 | 81 87 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝑋  =  𝑌  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 89 |  | olc | ⊢ ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 90 | 88 89 | syl6 | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝑋  =  𝑌  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 91 |  | oveq1 | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( 𝑡  ·  𝑌 )  =  ( ( 1  −  𝑇 )  ·  𝑌 ) ) | 
						
							| 92 |  | oveq2 | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( 1  −  𝑡 )  =  ( 1  −  ( 1  −  𝑇 ) ) ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( ( 1  −  𝑡 )  ·  𝑋 )  =  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) ) | 
						
							| 94 | 91 93 | oveq12d | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) )  =  ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) ) ) | 
						
							| 95 | 94 | fveq2d | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  =  ( 𝐹 ‘ ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) ) ) ) | 
						
							| 96 |  | oveq1 | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  =  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 97 | 92 | oveq1d | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 98 | 96 97 | oveq12d | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 99 | 95 98 | breq12d | ⊢ ( 𝑡  =  ( 1  −  𝑇 )  →  ( ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) )  ↔  ( 𝐹 ‘ ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) ) )  <  ( ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 100 | 9 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  𝑌  ∈  𝐷 ) | 
						
							| 101 | 6 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  𝑋  ∈  𝐷 ) | 
						
							| 102 | 100 101 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷 ) ) | 
						
							| 103 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  𝑌  <  𝑋 ) | 
						
							| 104 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  𝜑 ) | 
						
							| 105 |  | breq1 | ⊢ ( 𝑥  =  𝑌  →  ( 𝑥  <  𝑦  ↔  𝑌  <  𝑦 ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( 𝑥  =  𝑌  →  ( 𝑡  ·  𝑥 )  =  ( 𝑡  ·  𝑌 ) ) | 
						
							| 107 | 106 | fvoveq1d | ⊢ ( 𝑥  =  𝑌  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  =  ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) ) ) | 
						
							| 108 |  | fveq2 | ⊢ ( 𝑥  =  𝑌  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( 𝑥  =  𝑌  →  ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 110 | 109 | oveq1d | ⊢ ( 𝑥  =  𝑌  →  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 111 | 107 110 | breq12d | ⊢ ( 𝑥  =  𝑌  →  ( ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 112 | 111 | ralbidv | ⊢ ( 𝑥  =  𝑌  →  ( ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 113 | 112 | imbi2d | ⊢ ( 𝑥  =  𝑌  →  ( ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 114 | 105 113 | imbi12d | ⊢ ( 𝑥  =  𝑌  →  ( ( 𝑥  <  𝑦  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑥 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑥 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) )  ↔  ( 𝑌  <  𝑦  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 115 |  | breq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑌  <  𝑦  ↔  𝑌  <  𝑋 ) ) | 
						
							| 116 |  | oveq2 | ⊢ ( 𝑦  =  𝑋  →  ( ( 1  −  𝑡 )  ·  𝑦 )  =  ( ( 1  −  𝑡 )  ·  𝑋 ) ) | 
						
							| 117 | 116 | oveq2d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) )  =  ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) ) | 
						
							| 118 | 117 | fveq2d | ⊢ ( 𝑦  =  𝑋  →  ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  =  ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) ) ) | 
						
							| 119 |  | fveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 120 | 119 | oveq2d | ⊢ ( 𝑦  =  𝑋  →  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 121 | 120 | oveq2d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 122 | 118 121 | breq12d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 123 | 122 | ralbidv | ⊢ ( 𝑦  =  𝑋  →  ( ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) ) | 
						
							| 124 | 123 | imbi2d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 125 | 115 124 | imbi12d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑌  <  𝑦  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑦 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑦 ) ) ) ) )  ↔  ( 𝑌  <  𝑋  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) ) ) ) | 
						
							| 126 | 114 125 51 | vtocl2ga | ⊢ ( ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷 )  →  ( 𝑌  <  𝑋  →  ( 𝜑  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 127 | 102 103 104 126 | syl3c | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ∀ 𝑡  ∈  ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡  ·  𝑌 )  +  ( ( 1  −  𝑡 )  ·  𝑋 ) ) )  <  ( ( 𝑡  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  𝑡 )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 128 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 129 |  | elioore | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  𝑇  ∈  ℝ ) | 
						
							| 130 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  𝑇  ∈  ℝ )  →  ( 1  −  𝑇 )  ∈  ℝ ) | 
						
							| 131 | 128 129 130 | sylancr | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  ( 1  −  𝑇 )  ∈  ℝ ) | 
						
							| 132 |  | eliooord | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  ( 0  <  𝑇  ∧  𝑇  <  1 ) ) | 
						
							| 133 | 132 | simprd | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  𝑇  <  1 ) | 
						
							| 134 |  | posdif | ⊢ ( ( 𝑇  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑇  <  1  ↔  0  <  ( 1  −  𝑇 ) ) ) | 
						
							| 135 | 129 128 134 | sylancl | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  ( 𝑇  <  1  ↔  0  <  ( 1  −  𝑇 ) ) ) | 
						
							| 136 | 133 135 | mpbid | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  0  <  ( 1  −  𝑇 ) ) | 
						
							| 137 | 132 | simpld | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  0  <  𝑇 ) | 
						
							| 138 |  | ltsubpos | ⊢ ( ( 𝑇  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  <  𝑇  ↔  ( 1  −  𝑇 )  <  1 ) ) | 
						
							| 139 | 129 128 138 | sylancl | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  ( 0  <  𝑇  ↔  ( 1  −  𝑇 )  <  1 ) ) | 
						
							| 140 | 137 139 | mpbid | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  ( 1  −  𝑇 )  <  1 ) | 
						
							| 141 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 142 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 143 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ* )  →  ( ( 1  −  𝑇 )  ∈  ( 0 (,) 1 )  ↔  ( ( 1  −  𝑇 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑇 )  ∧  ( 1  −  𝑇 )  <  1 ) ) ) | 
						
							| 144 | 141 142 143 | mp2an | ⊢ ( ( 1  −  𝑇 )  ∈  ( 0 (,) 1 )  ↔  ( ( 1  −  𝑇 )  ∈  ℝ  ∧  0  <  ( 1  −  𝑇 )  ∧  ( 1  −  𝑇 )  <  1 ) ) | 
						
							| 145 | 131 136 140 144 | syl3anbrc | ⊢ ( 𝑇  ∈  ( 0 (,) 1 )  →  ( 1  −  𝑇 )  ∈  ( 0 (,) 1 ) ) | 
						
							| 146 | 145 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( 1  −  𝑇 )  ∈  ( 0 (,) 1 ) ) | 
						
							| 147 | 99 127 146 | rspcdva | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( 𝐹 ‘ ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) ) )  <  ( ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 148 | 128 60 130 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 1  −  𝑇 )  ∈  ℝ ) | 
						
							| 149 | 148 10 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  −  𝑇 )  ·  𝑌 )  ∈  ℝ ) | 
						
							| 150 | 149 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  −  𝑇 )  ·  𝑌 )  ∈  ℂ ) | 
						
							| 151 | 60 7 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  ·  𝑋 )  ∈  ℝ ) | 
						
							| 152 | 151 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  ·  𝑋 )  ∈  ℂ ) | 
						
							| 153 |  | nncan | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 154 | 62 61 153 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 155 | 154 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 )  =  ( 𝑇  ·  𝑋 ) ) | 
						
							| 156 | 155 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) )  =  ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( 𝑇  ·  𝑋 ) ) ) | 
						
							| 157 | 150 152 156 | comraddd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) )  =  ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) )  =  ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) ) | 
						
							| 159 | 158 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( 𝐹 ‘ ( ( ( 1  −  𝑇 )  ·  𝑌 )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝑋 ) ) )  =  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) ) ) | 
						
							| 160 | 148 75 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  ∈  ℝ ) | 
						
							| 161 | 160 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  ∈  ℂ ) | 
						
							| 162 | 74 6 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 163 | 60 162 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 164 | 163 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  ∈  ℂ ) | 
						
							| 165 | 154 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 166 | 165 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) ) )  =  ( ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 167 | 161 164 166 | comraddd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  +  ( ( 1  −  ( 1  −  𝑇 ) )  ·  ( 𝐹 ‘ 𝑋 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 169 | 147 159 168 | 3brtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 170 | 169 | orcd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  ( 𝑇  ∈  ( 0 (,) 1 )  ∧  𝑌  <  𝑋 ) )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 171 | 170 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝑌  <  𝑋  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 172 | 57 90 171 | 3jaod | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑋  <  𝑌  ∨  𝑋  =  𝑌  ∨  𝑌  <  𝑋 )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 173 | 12 172 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 174 | 173 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  ∈  ( 0 (,) 1 )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 175 |  | elpri | ⊢ ( 𝑇  ∈  { 0 ,  1 }  →  ( 𝑇  =  0  ∨  𝑇  =  1 ) ) | 
						
							| 176 | 76 | addlidd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 0  +  ( 𝐹 ‘ 𝑌 ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 177 | 162 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 178 | 177 | mul02d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 0  ·  ( 𝐹 ‘ 𝑋 ) )  =  0 ) | 
						
							| 179 | 178 78 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 0  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 1  ·  ( 𝐹 ‘ 𝑌 ) ) )  =  ( 0  +  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 180 | 7 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑋  ∈  ℂ ) | 
						
							| 181 | 180 | mul02d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 0  ·  𝑋 )  =  0 ) | 
						
							| 182 | 181 70 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 0  ·  𝑋 )  +  ( 1  ·  𝑌 ) )  =  ( 0  +  𝑌 ) ) | 
						
							| 183 | 68 | addlidd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 0  +  𝑌 )  =  𝑌 ) | 
						
							| 184 | 182 183 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 0  ·  𝑋 )  +  ( 1  ·  𝑌 ) )  =  𝑌 ) | 
						
							| 185 | 184 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 0  ·  𝑋 )  +  ( 1  ·  𝑌 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 186 | 176 179 185 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 0  ·  𝑋 )  +  ( 1  ·  𝑌 ) ) )  =  ( ( 0  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 1  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 187 |  | oveq1 | ⊢ ( 𝑇  =  0  →  ( 𝑇  ·  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 188 |  | oveq2 | ⊢ ( 𝑇  =  0  →  ( 1  −  𝑇 )  =  ( 1  −  0 ) ) | 
						
							| 189 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 190 | 188 189 | eqtrdi | ⊢ ( 𝑇  =  0  →  ( 1  −  𝑇 )  =  1 ) | 
						
							| 191 | 190 | oveq1d | ⊢ ( 𝑇  =  0  →  ( ( 1  −  𝑇 )  ·  𝑌 )  =  ( 1  ·  𝑌 ) ) | 
						
							| 192 | 187 191 | oveq12d | ⊢ ( 𝑇  =  0  →  ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) )  =  ( ( 0  ·  𝑋 )  +  ( 1  ·  𝑌 ) ) ) | 
						
							| 193 | 192 | fveq2d | ⊢ ( 𝑇  =  0  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( 𝐹 ‘ ( ( 0  ·  𝑋 )  +  ( 1  ·  𝑌 ) ) ) ) | 
						
							| 194 |  | oveq1 | ⊢ ( 𝑇  =  0  →  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( 0  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 195 | 190 | oveq1d | ⊢ ( 𝑇  =  0  →  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  =  ( 1  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 196 | 194 195 | oveq12d | ⊢ ( 𝑇  =  0  →  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  =  ( ( 0  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 1  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 197 | 193 196 | eqeq12d | ⊢ ( 𝑇  =  0  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ↔  ( 𝐹 ‘ ( ( 0  ·  𝑋 )  +  ( 1  ·  𝑌 ) ) )  =  ( ( 0  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 1  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 198 | 186 197 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  =  0  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 199 | 177 | addridd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝐹 ‘ 𝑋 )  +  0 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 200 | 177 | mullidd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 1  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 201 | 76 | mul02d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 0  ·  ( 𝐹 ‘ 𝑌 ) )  =  0 ) | 
						
							| 202 | 200 201 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 0  ·  ( 𝐹 ‘ 𝑌 ) ) )  =  ( ( 𝐹 ‘ 𝑋 )  +  0 ) ) | 
						
							| 203 | 180 | mullidd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 1  ·  𝑋 )  =  𝑋 ) | 
						
							| 204 | 68 | mul02d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 0  ·  𝑌 )  =  0 ) | 
						
							| 205 | 203 204 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  ·  𝑋 )  +  ( 0  ·  𝑌 ) )  =  ( 𝑋  +  0 ) ) | 
						
							| 206 | 180 | addridd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑋  +  0 )  =  𝑋 ) | 
						
							| 207 | 205 206 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 1  ·  𝑋 )  +  ( 0  ·  𝑌 ) )  =  𝑋 ) | 
						
							| 208 | 207 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 1  ·  𝑋 )  +  ( 0  ·  𝑌 ) ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 209 | 199 202 208 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 1  ·  𝑋 )  +  ( 0  ·  𝑌 ) ) )  =  ( ( 1  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 0  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 210 |  | oveq1 | ⊢ ( 𝑇  =  1  →  ( 𝑇  ·  𝑋 )  =  ( 1  ·  𝑋 ) ) | 
						
							| 211 |  | oveq2 | ⊢ ( 𝑇  =  1  →  ( 1  −  𝑇 )  =  ( 1  −  1 ) ) | 
						
							| 212 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 213 | 211 212 | eqtrdi | ⊢ ( 𝑇  =  1  →  ( 1  −  𝑇 )  =  0 ) | 
						
							| 214 | 213 | oveq1d | ⊢ ( 𝑇  =  1  →  ( ( 1  −  𝑇 )  ·  𝑌 )  =  ( 0  ·  𝑌 ) ) | 
						
							| 215 | 210 214 | oveq12d | ⊢ ( 𝑇  =  1  →  ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) )  =  ( ( 1  ·  𝑋 )  +  ( 0  ·  𝑌 ) ) ) | 
						
							| 216 | 215 | fveq2d | ⊢ ( 𝑇  =  1  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( 𝐹 ‘ ( ( 1  ·  𝑋 )  +  ( 0  ·  𝑌 ) ) ) ) | 
						
							| 217 |  | oveq1 | ⊢ ( 𝑇  =  1  →  ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  =  ( 1  ·  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 218 | 213 | oveq1d | ⊢ ( 𝑇  =  1  →  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) )  =  ( 0  ·  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 219 | 217 218 | oveq12d | ⊢ ( 𝑇  =  1  →  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  =  ( ( 1  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 0  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 220 | 216 219 | eqeq12d | ⊢ ( 𝑇  =  1  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ↔  ( 𝐹 ‘ ( ( 1  ·  𝑋 )  +  ( 0  ·  𝑌 ) ) )  =  ( ( 1  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( 0  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 221 | 209 220 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  =  1  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 222 | 198 221 | jaod | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  =  0  ∨  𝑇  =  1 )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 223 | 175 222 89 | syl56 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  ∈  { 0 ,  1 }  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 224 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 225 |  | prunioo | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  0  ≤  1 )  →  ( ( 0 (,) 1 )  ∪  { 0 ,  1 } )  =  ( 0 [,] 1 ) ) | 
						
							| 226 | 141 142 224 225 | mp3an | ⊢ ( ( 0 (,) 1 )  ∪  { 0 ,  1 } )  =  ( 0 [,] 1 ) | 
						
							| 227 | 59 226 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑇  ∈  ( ( 0 (,) 1 )  ∪  { 0 ,  1 } ) ) | 
						
							| 228 |  | elun | ⊢ ( 𝑇  ∈  ( ( 0 (,) 1 )  ∪  { 0 ,  1 } )  ↔  ( 𝑇  ∈  ( 0 (,) 1 )  ∨  𝑇  ∈  { 0 ,  1 } ) ) | 
						
							| 229 | 227 228 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝑇  ∈  ( 0 (,) 1 )  ∨  𝑇  ∈  { 0 ,  1 } ) ) | 
						
							| 230 | 174 223 229 | mpjaod | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) | 
						
							| 231 | 1 3 | cvxcl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) )  ∈  𝐷 ) | 
						
							| 232 | 74 231 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  ∈  ℝ ) | 
						
							| 233 | 163 160 | readdcld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∈  ℝ ) | 
						
							| 234 | 232 233 | leloed | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  ≤  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ↔  ( ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  <  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) )  ∨  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  =  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 235 | 230 234 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐹 ‘ ( ( 𝑇  ·  𝑋 )  +  ( ( 1  −  𝑇 )  ·  𝑌 ) ) )  ≤  ( ( 𝑇  ·  ( 𝐹 ‘ 𝑋 ) )  +  ( ( 1  −  𝑇 )  ·  ( 𝐹 ‘ 𝑌 ) ) ) ) |