| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scvxcvx.1 |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
| 2 |
|
scvxcvx.2 |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
| 3 |
|
scvxcvx.3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ 𝐷 ) |
| 4 |
|
scvxcvx.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦 ) ∧ 𝑡 ∈ ( 0 (,) 1 ) ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝐷 ⊆ ℝ ) |
| 6 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑋 ∈ 𝐷 ) |
| 7 |
5 6
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑋 ∈ ℝ ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑋 ∈ ℝ ) |
| 9 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑌 ∈ 𝐷 ) |
| 10 |
5 9
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑌 ∈ ℝ ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑌 ∈ ℝ ) |
| 12 |
8 11
|
lttri4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ∨ 𝑌 < 𝑋 ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 · 𝑋 ) = ( 𝑇 · 𝑋 ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑡 = 𝑇 → ( 1 − 𝑡 ) = ( 1 − 𝑇 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 1 − 𝑡 ) · 𝑌 ) = ( ( 1 − 𝑇 ) · 𝑌 ) ) |
| 16 |
13 15
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) = ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) = ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 19 |
14
|
oveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) = ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) |
| 20 |
18 19
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 21 |
17 20
|
breq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 22 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → 𝑋 ∈ 𝐷 ) |
| 23 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → 𝑌 ∈ 𝐷 ) |
| 24 |
22 23
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ) |
| 25 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → 𝑋 < 𝑌 ) |
| 26 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → 𝜑 ) |
| 27 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 < 𝑦 ↔ 𝑋 < 𝑦 ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑡 · 𝑥 ) = ( 𝑡 · 𝑋 ) ) |
| 29 |
28
|
fvoveq1d |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 33 |
29 32
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 34 |
33
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 35 |
34
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 36 |
27 35
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 < 𝑦 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑋 < 𝑦 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 37 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 < 𝑦 ↔ 𝑋 < 𝑌 ) ) |
| 38 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( ( 1 − 𝑡 ) · 𝑦 ) = ( ( 1 − 𝑡 ) · 𝑌 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) ) |
| 41 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 44 |
40 43
|
breq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 45 |
44
|
ralbidv |
⊢ ( 𝑦 = 𝑌 → ( ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 46 |
45
|
imbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 47 |
37 46
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 < 𝑦 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑋 < 𝑌 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) ) |
| 48 |
4
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦 ) ) → ( 𝑡 ∈ ( 0 (,) 1 ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 49 |
48
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦 ) ) → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 |
49
|
expcom |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦 ) → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 51 |
50
|
3expia |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 < 𝑦 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 52 |
36 47 51
|
vtocl2ga |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( 𝑋 < 𝑌 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 53 |
24 25 26 52
|
syl3c |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑋 ) + ( ( 1 − 𝑡 ) · 𝑌 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 54 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → 𝑇 ∈ ( 0 (,) 1 ) ) |
| 55 |
21 53 54
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 56 |
55
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑋 < 𝑌 ) ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 57 |
56
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑋 < 𝑌 → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 58 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 59 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
| 60 |
58 59
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ℝ ) |
| 61 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ℂ ) |
| 62 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 63 |
|
pncan3 |
⊢ ( ( 𝑇 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑇 + ( 1 − 𝑇 ) ) = 1 ) |
| 64 |
61 62 63
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 + ( 1 − 𝑇 ) ) = 1 ) |
| 65 |
64
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 + ( 1 − 𝑇 ) ) · 𝑌 ) = ( 1 · 𝑌 ) ) |
| 66 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 67 |
62 61 66
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 68 |
10
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑌 ∈ ℂ ) |
| 69 |
61 67 68
|
adddird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 + ( 1 − 𝑇 ) ) · 𝑌 ) = ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
| 70 |
68
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 · 𝑌 ) = 𝑌 ) |
| 71 |
65 69 70
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = 𝑌 ) |
| 72 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 73 |
64
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 + ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑌 ) ) = ( 1 · ( 𝐹 ‘ 𝑌 ) ) ) |
| 74 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
| 75 |
74 9
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
| 76 |
75
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℂ ) |
| 77 |
61 67 76
|
adddird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 + ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 78 |
76
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 · ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 79 |
73 77 78
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 80 |
72 79
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 81 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 82 |
|
oveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑇 · 𝑋 ) = ( 𝑇 · 𝑌 ) ) |
| 83 |
82
|
fvoveq1d |
⊢ ( 𝑋 = 𝑌 → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( 𝐹 ‘ ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) ) |
| 84 |
|
fveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 85 |
84
|
oveq2d |
⊢ ( 𝑋 = 𝑌 → ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝑇 · ( 𝐹 ‘ 𝑌 ) ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 87 |
83 86
|
eqeq12d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 88 |
81 87
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑋 = 𝑌 → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 89 |
|
olc |
⊢ ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 90 |
88 89
|
syl6 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑋 = 𝑌 → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 91 |
|
oveq1 |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( 𝑡 · 𝑌 ) = ( ( 1 − 𝑇 ) · 𝑌 ) ) |
| 92 |
|
oveq2 |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( 1 − 𝑡 ) = ( 1 − ( 1 − 𝑇 ) ) ) |
| 93 |
92
|
oveq1d |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( ( 1 − 𝑡 ) · 𝑋 ) = ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) |
| 94 |
91 93
|
oveq12d |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) = ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) ) |
| 95 |
94
|
fveq2d |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) = ( 𝐹 ‘ ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) ) ) |
| 96 |
|
oveq1 |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) = ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) |
| 97 |
92
|
oveq1d |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) = ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 98 |
96 97
|
oveq12d |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) = ( ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 99 |
95 98
|
breq12d |
⊢ ( 𝑡 = ( 1 − 𝑇 ) → ( ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( 𝐹 ‘ ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) ) < ( ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 100 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → 𝑌 ∈ 𝐷 ) |
| 101 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → 𝑋 ∈ 𝐷 ) |
| 102 |
100 101
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) ) |
| 103 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → 𝑌 < 𝑋 ) |
| 104 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → 𝜑 ) |
| 105 |
|
breq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 < 𝑦 ↔ 𝑌 < 𝑦 ) ) |
| 106 |
|
oveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝑡 · 𝑥 ) = ( 𝑡 · 𝑌 ) ) |
| 107 |
106
|
fvoveq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ) |
| 108 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 109 |
108
|
oveq2d |
⊢ ( 𝑥 = 𝑌 → ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) ) |
| 110 |
109
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 111 |
107 110
|
breq12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 112 |
111
|
ralbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 113 |
112
|
imbi2d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 114 |
105 113
|
imbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 < 𝑦 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑌 < 𝑦 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 115 |
|
breq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑌 < 𝑦 ↔ 𝑌 < 𝑋 ) ) |
| 116 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 1 − 𝑡 ) · 𝑦 ) = ( ( 1 − 𝑡 ) · 𝑋 ) ) |
| 117 |
116
|
oveq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) |
| 118 |
117
|
fveq2d |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) ) |
| 119 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 120 |
119
|
oveq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 121 |
120
|
oveq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 122 |
118 121
|
breq12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 123 |
122
|
ralbidv |
⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 124 |
123
|
imbi2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ) ) ) |
| 125 |
115 124
|
imbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑌 < 𝑦 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝑌 < 𝑋 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ) ) ) ) |
| 126 |
114 125 51
|
vtocl2ga |
⊢ ( ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) → ( 𝑌 < 𝑋 → ( 𝜑 → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ) ) ) |
| 127 |
102 103 104 126
|
syl3c |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ∀ 𝑡 ∈ ( 0 (,) 1 ) ( 𝐹 ‘ ( ( 𝑡 · 𝑌 ) + ( ( 1 − 𝑡 ) · 𝑋 ) ) ) < ( ( 𝑡 · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 128 |
|
1re |
⊢ 1 ∈ ℝ |
| 129 |
|
elioore |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → 𝑇 ∈ ℝ ) |
| 130 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 131 |
128 129 130
|
sylancr |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 132 |
|
eliooord |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → ( 0 < 𝑇 ∧ 𝑇 < 1 ) ) |
| 133 |
132
|
simprd |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → 𝑇 < 1 ) |
| 134 |
|
posdif |
⊢ ( ( 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑇 < 1 ↔ 0 < ( 1 − 𝑇 ) ) ) |
| 135 |
129 128 134
|
sylancl |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → ( 𝑇 < 1 ↔ 0 < ( 1 − 𝑇 ) ) ) |
| 136 |
133 135
|
mpbid |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → 0 < ( 1 − 𝑇 ) ) |
| 137 |
132
|
simpld |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → 0 < 𝑇 ) |
| 138 |
|
ltsubpos |
⊢ ( ( 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 < 𝑇 ↔ ( 1 − 𝑇 ) < 1 ) ) |
| 139 |
129 128 138
|
sylancl |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → ( 0 < 𝑇 ↔ ( 1 − 𝑇 ) < 1 ) ) |
| 140 |
137 139
|
mpbid |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → ( 1 − 𝑇 ) < 1 ) |
| 141 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 142 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 143 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 1 − 𝑇 ) ∈ ( 0 (,) 1 ) ↔ ( ( 1 − 𝑇 ) ∈ ℝ ∧ 0 < ( 1 − 𝑇 ) ∧ ( 1 − 𝑇 ) < 1 ) ) ) |
| 144 |
141 142 143
|
mp2an |
⊢ ( ( 1 − 𝑇 ) ∈ ( 0 (,) 1 ) ↔ ( ( 1 − 𝑇 ) ∈ ℝ ∧ 0 < ( 1 − 𝑇 ) ∧ ( 1 − 𝑇 ) < 1 ) ) |
| 145 |
131 136 140 144
|
syl3anbrc |
⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → ( 1 − 𝑇 ) ∈ ( 0 (,) 1 ) ) |
| 146 |
145
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( 1 − 𝑇 ) ∈ ( 0 (,) 1 ) ) |
| 147 |
99 127 146
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( 𝐹 ‘ ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) ) < ( ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 148 |
128 60 130
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 149 |
148 10
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − 𝑇 ) · 𝑌 ) ∈ ℝ ) |
| 150 |
149
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − 𝑇 ) · 𝑌 ) ∈ ℂ ) |
| 151 |
60 7
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 · 𝑋 ) ∈ ℝ ) |
| 152 |
151
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 · 𝑋 ) ∈ ℂ ) |
| 153 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 154 |
62 61 153
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 155 |
154
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) = ( 𝑇 · 𝑋 ) ) |
| 156 |
155
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) = ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( 𝑇 · 𝑋 ) ) ) |
| 157 |
150 152 156
|
comraddd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) = ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
| 158 |
157
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) = ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
| 159 |
158
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( 𝐹 ‘ ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) ) ) = ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) ) |
| 160 |
148 75
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ∈ ℝ ) |
| 161 |
160
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ∈ ℂ ) |
| 162 |
74 6
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 163 |
60 162
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 164 |
163
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) ∈ ℂ ) |
| 165 |
154
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 166 |
165
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) = ( ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) + ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 167 |
161 164 166
|
comraddd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 168 |
167
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) + ( ( 1 − ( 1 − 𝑇 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 169 |
147 159 168
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 170 |
169
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ ( 𝑇 ∈ ( 0 (,) 1 ) ∧ 𝑌 < 𝑋 ) ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 171 |
170
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑌 < 𝑋 → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 172 |
57 90 171
|
3jaod |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ∨ 𝑌 < 𝑋 ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 173 |
12 172
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 174 |
173
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 ∈ ( 0 (,) 1 ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 175 |
|
elpri |
⊢ ( 𝑇 ∈ { 0 , 1 } → ( 𝑇 = 0 ∨ 𝑇 = 1 ) ) |
| 176 |
76
|
addlidd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 0 + ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 177 |
162
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 178 |
177
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 0 · ( 𝐹 ‘ 𝑋 ) ) = 0 ) |
| 179 |
178 78
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 0 · ( 𝐹 ‘ 𝑋 ) ) + ( 1 · ( 𝐹 ‘ 𝑌 ) ) ) = ( 0 + ( 𝐹 ‘ 𝑌 ) ) ) |
| 180 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑋 ∈ ℂ ) |
| 181 |
180
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 0 · 𝑋 ) = 0 ) |
| 182 |
181 70
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 0 · 𝑋 ) + ( 1 · 𝑌 ) ) = ( 0 + 𝑌 ) ) |
| 183 |
68
|
addlidd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 0 + 𝑌 ) = 𝑌 ) |
| 184 |
182 183
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 0 · 𝑋 ) + ( 1 · 𝑌 ) ) = 𝑌 ) |
| 185 |
184
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 0 · 𝑋 ) + ( 1 · 𝑌 ) ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 186 |
176 179 185
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 0 · 𝑋 ) + ( 1 · 𝑌 ) ) ) = ( ( 0 · ( 𝐹 ‘ 𝑋 ) ) + ( 1 · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 187 |
|
oveq1 |
⊢ ( 𝑇 = 0 → ( 𝑇 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 188 |
|
oveq2 |
⊢ ( 𝑇 = 0 → ( 1 − 𝑇 ) = ( 1 − 0 ) ) |
| 189 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 190 |
188 189
|
eqtrdi |
⊢ ( 𝑇 = 0 → ( 1 − 𝑇 ) = 1 ) |
| 191 |
190
|
oveq1d |
⊢ ( 𝑇 = 0 → ( ( 1 − 𝑇 ) · 𝑌 ) = ( 1 · 𝑌 ) ) |
| 192 |
187 191
|
oveq12d |
⊢ ( 𝑇 = 0 → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = ( ( 0 · 𝑋 ) + ( 1 · 𝑌 ) ) ) |
| 193 |
192
|
fveq2d |
⊢ ( 𝑇 = 0 → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( 𝐹 ‘ ( ( 0 · 𝑋 ) + ( 1 · 𝑌 ) ) ) ) |
| 194 |
|
oveq1 |
⊢ ( 𝑇 = 0 → ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) = ( 0 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 195 |
190
|
oveq1d |
⊢ ( 𝑇 = 0 → ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) = ( 1 · ( 𝐹 ‘ 𝑌 ) ) ) |
| 196 |
194 195
|
oveq12d |
⊢ ( 𝑇 = 0 → ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) = ( ( 0 · ( 𝐹 ‘ 𝑋 ) ) + ( 1 · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 197 |
193 196
|
eqeq12d |
⊢ ( 𝑇 = 0 → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ↔ ( 𝐹 ‘ ( ( 0 · 𝑋 ) + ( 1 · 𝑌 ) ) ) = ( ( 0 · ( 𝐹 ‘ 𝑋 ) ) + ( 1 · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 198 |
186 197
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 = 0 → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 199 |
177
|
addridd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐹 ‘ 𝑋 ) + 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 200 |
177
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 201 |
76
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 0 · ( 𝐹 ‘ 𝑌 ) ) = 0 ) |
| 202 |
200 201
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 · ( 𝐹 ‘ 𝑋 ) ) + ( 0 · ( 𝐹 ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) + 0 ) ) |
| 203 |
180
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 204 |
68
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 0 · 𝑌 ) = 0 ) |
| 205 |
203 204
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 · 𝑋 ) + ( 0 · 𝑌 ) ) = ( 𝑋 + 0 ) ) |
| 206 |
180
|
addridd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 207 |
205 206
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 · 𝑋 ) + ( 0 · 𝑌 ) ) = 𝑋 ) |
| 208 |
207
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 1 · 𝑋 ) + ( 0 · 𝑌 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 209 |
199 202 208
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 1 · 𝑋 ) + ( 0 · 𝑌 ) ) ) = ( ( 1 · ( 𝐹 ‘ 𝑋 ) ) + ( 0 · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 210 |
|
oveq1 |
⊢ ( 𝑇 = 1 → ( 𝑇 · 𝑋 ) = ( 1 · 𝑋 ) ) |
| 211 |
|
oveq2 |
⊢ ( 𝑇 = 1 → ( 1 − 𝑇 ) = ( 1 − 1 ) ) |
| 212 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 213 |
211 212
|
eqtrdi |
⊢ ( 𝑇 = 1 → ( 1 − 𝑇 ) = 0 ) |
| 214 |
213
|
oveq1d |
⊢ ( 𝑇 = 1 → ( ( 1 − 𝑇 ) · 𝑌 ) = ( 0 · 𝑌 ) ) |
| 215 |
210 214
|
oveq12d |
⊢ ( 𝑇 = 1 → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = ( ( 1 · 𝑋 ) + ( 0 · 𝑌 ) ) ) |
| 216 |
215
|
fveq2d |
⊢ ( 𝑇 = 1 → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( 𝐹 ‘ ( ( 1 · 𝑋 ) + ( 0 · 𝑌 ) ) ) ) |
| 217 |
|
oveq1 |
⊢ ( 𝑇 = 1 → ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) = ( 1 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 218 |
213
|
oveq1d |
⊢ ( 𝑇 = 1 → ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) = ( 0 · ( 𝐹 ‘ 𝑌 ) ) ) |
| 219 |
217 218
|
oveq12d |
⊢ ( 𝑇 = 1 → ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) = ( ( 1 · ( 𝐹 ‘ 𝑋 ) ) + ( 0 · ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 220 |
216 219
|
eqeq12d |
⊢ ( 𝑇 = 1 → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ↔ ( 𝐹 ‘ ( ( 1 · 𝑋 ) + ( 0 · 𝑌 ) ) ) = ( ( 1 · ( 𝐹 ‘ 𝑋 ) ) + ( 0 · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 221 |
209 220
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 = 1 → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 222 |
198 221
|
jaod |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 = 0 ∨ 𝑇 = 1 ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 223 |
175 222 89
|
syl56 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 ∈ { 0 , 1 } → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 224 |
|
0le1 |
⊢ 0 ≤ 1 |
| 225 |
|
prunioo |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( ( 0 (,) 1 ) ∪ { 0 , 1 } ) = ( 0 [,] 1 ) ) |
| 226 |
141 142 224 225
|
mp3an |
⊢ ( ( 0 (,) 1 ) ∪ { 0 , 1 } ) = ( 0 [,] 1 ) |
| 227 |
59 226
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ( ( 0 (,) 1 ) ∪ { 0 , 1 } ) ) |
| 228 |
|
elun |
⊢ ( 𝑇 ∈ ( ( 0 (,) 1 ) ∪ { 0 , 1 } ) ↔ ( 𝑇 ∈ ( 0 (,) 1 ) ∨ 𝑇 ∈ { 0 , 1 } ) ) |
| 229 |
227 228
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 ∈ ( 0 (,) 1 ) ∨ 𝑇 ∈ { 0 , 1 } ) ) |
| 230 |
174 223 229
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) |
| 231 |
1 3
|
cvxcl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ 𝐷 ) |
| 232 |
74 231
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) ∈ ℝ ) |
| 233 |
163 160
|
readdcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∈ ℝ ) |
| 234 |
232 233
|
leloed |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) ≤ ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) < ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ∨ ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) = ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) ) ) |
| 235 |
230 234
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) ≤ ( ( 𝑇 · ( 𝐹 ‘ 𝑋 ) ) + ( ( 1 − 𝑇 ) · ( 𝐹 ‘ 𝑌 ) ) ) ) |