Metamath Proof Explorer


Theorem jensenlem1

Description: Lemma for jensen . (Contributed by Mario Carneiro, 4-Jun-2016)

Ref Expression
Hypotheses jensen.1 ( 𝜑𝐷 ⊆ ℝ )
jensen.2 ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
jensen.3 ( ( 𝜑 ∧ ( 𝑎𝐷𝑏𝐷 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ 𝐷 )
jensen.4 ( 𝜑𝐴 ∈ Fin )
jensen.5 ( 𝜑𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) )
jensen.6 ( 𝜑𝑋 : 𝐴𝐷 )
jensen.7 ( 𝜑 → 0 < ( ℂfld Σg 𝑇 ) )
jensen.8 ( ( 𝜑 ∧ ( 𝑥𝐷𝑦𝐷𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ≤ ( ( 𝑡 · ( 𝐹𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹𝑦 ) ) ) )
jensenlem.1 ( 𝜑 → ¬ 𝑧𝐵 )
jensenlem.2 ( 𝜑 → ( 𝐵 ∪ { 𝑧 } ) ⊆ 𝐴 )
jensenlem.s 𝑆 = ( ℂfld Σg ( 𝑇𝐵 ) )
jensenlem.l 𝐿 = ( ℂfld Σg ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) )
Assertion jensenlem1 ( 𝜑𝐿 = ( 𝑆 + ( 𝑇𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 jensen.1 ( 𝜑𝐷 ⊆ ℝ )
2 jensen.2 ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
3 jensen.3 ( ( 𝜑 ∧ ( 𝑎𝐷𝑏𝐷 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ 𝐷 )
4 jensen.4 ( 𝜑𝐴 ∈ Fin )
5 jensen.5 ( 𝜑𝑇 : 𝐴 ⟶ ( 0 [,) +∞ ) )
6 jensen.6 ( 𝜑𝑋 : 𝐴𝐷 )
7 jensen.7 ( 𝜑 → 0 < ( ℂfld Σg 𝑇 ) )
8 jensen.8 ( ( 𝜑 ∧ ( 𝑥𝐷𝑦𝐷𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ≤ ( ( 𝑡 · ( 𝐹𝑥 ) ) + ( ( 1 − 𝑡 ) · ( 𝐹𝑦 ) ) ) )
9 jensenlem.1 ( 𝜑 → ¬ 𝑧𝐵 )
10 jensenlem.2 ( 𝜑 → ( 𝐵 ∪ { 𝑧 } ) ⊆ 𝐴 )
11 jensenlem.s 𝑆 = ( ℂfld Σg ( 𝑇𝐵 ) )
12 jensenlem.l 𝐿 = ( ℂfld Σg ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) )
13 cnfldbas ℂ = ( Base ‘ ℂfld )
14 cnfldadd + = ( +g ‘ ℂfld )
15 cnring fld ∈ Ring
16 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
17 15 16 mp1i ( 𝜑 → ℂfld ∈ CMnd )
18 10 unssad ( 𝜑𝐵𝐴 )
19 4 18 ssfid ( 𝜑𝐵 ∈ Fin )
20 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
21 ax-resscn ℝ ⊆ ℂ
22 20 21 sstri ( 0 [,) +∞ ) ⊆ ℂ
23 18 sselda ( ( 𝜑𝑥𝐵 ) → 𝑥𝐴 )
24 5 ffvelrnda ( ( 𝜑𝑥𝐴 ) → ( 𝑇𝑥 ) ∈ ( 0 [,) +∞ ) )
25 23 24 syldan ( ( 𝜑𝑥𝐵 ) → ( 𝑇𝑥 ) ∈ ( 0 [,) +∞ ) )
26 22 25 sseldi ( ( 𝜑𝑥𝐵 ) → ( 𝑇𝑥 ) ∈ ℂ )
27 10 unssbd ( 𝜑 → { 𝑧 } ⊆ 𝐴 )
28 vex 𝑧 ∈ V
29 28 snss ( 𝑧𝐴 ↔ { 𝑧 } ⊆ 𝐴 )
30 27 29 sylibr ( 𝜑𝑧𝐴 )
31 5 30 ffvelrnd ( 𝜑 → ( 𝑇𝑧 ) ∈ ( 0 [,) +∞ ) )
32 22 31 sseldi ( 𝜑 → ( 𝑇𝑧 ) ∈ ℂ )
33 fveq2 ( 𝑥 = 𝑧 → ( 𝑇𝑥 ) = ( 𝑇𝑧 ) )
34 13 14 17 19 26 30 9 32 33 gsumunsn ( 𝜑 → ( ℂfld Σg ( 𝑥 ∈ ( 𝐵 ∪ { 𝑧 } ) ↦ ( 𝑇𝑥 ) ) ) = ( ( ℂfld Σg ( 𝑥𝐵 ↦ ( 𝑇𝑥 ) ) ) + ( 𝑇𝑧 ) ) )
35 5 10 feqresmpt ( 𝜑 → ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) = ( 𝑥 ∈ ( 𝐵 ∪ { 𝑧 } ) ↦ ( 𝑇𝑥 ) ) )
36 35 oveq2d ( 𝜑 → ( ℂfld Σg ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) ) = ( ℂfld Σg ( 𝑥 ∈ ( 𝐵 ∪ { 𝑧 } ) ↦ ( 𝑇𝑥 ) ) ) )
37 5 18 feqresmpt ( 𝜑 → ( 𝑇𝐵 ) = ( 𝑥𝐵 ↦ ( 𝑇𝑥 ) ) )
38 37 oveq2d ( 𝜑 → ( ℂfld Σg ( 𝑇𝐵 ) ) = ( ℂfld Σg ( 𝑥𝐵 ↦ ( 𝑇𝑥 ) ) ) )
39 38 oveq1d ( 𝜑 → ( ( ℂfld Σg ( 𝑇𝐵 ) ) + ( 𝑇𝑧 ) ) = ( ( ℂfld Σg ( 𝑥𝐵 ↦ ( 𝑇𝑥 ) ) ) + ( 𝑇𝑧 ) ) )
40 34 36 39 3eqtr4d ( 𝜑 → ( ℂfld Σg ( 𝑇 ↾ ( 𝐵 ∪ { 𝑧 } ) ) ) = ( ( ℂfld Σg ( 𝑇𝐵 ) ) + ( 𝑇𝑧 ) ) )
41 11 oveq1i ( 𝑆 + ( 𝑇𝑧 ) ) = ( ( ℂfld Σg ( 𝑇𝐵 ) ) + ( 𝑇𝑧 ) )
42 40 12 41 3eqtr4g ( 𝜑𝐿 = ( 𝑆 + ( 𝑇𝑧 ) ) )