Description: Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsubpos | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 𝐵 − 𝐴 ) < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltaddpos | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ 𝐵 < ( 𝐵 + 𝐴 ) ) ) | |
| 2 | ltsubadd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 − 𝐴 ) < 𝐵 ↔ 𝐵 < ( 𝐵 + 𝐴 ) ) ) | |
| 3 | 2 | 3anidm13 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 − 𝐴 ) < 𝐵 ↔ 𝐵 < ( 𝐵 + 𝐴 ) ) ) |
| 4 | 3 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 − 𝐴 ) < 𝐵 ↔ 𝐵 < ( 𝐵 + 𝐴 ) ) ) |
| 5 | 1 4 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 ↔ ( 𝐵 − 𝐴 ) < 𝐵 ) ) |