Step |
Hyp |
Ref |
Expression |
1 |
|
amgm3d.0 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
amgm3d.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
amgm3d.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
5 |
|
fzofi |
⊢ ( 0 ..^ 3 ) ∈ Fin |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 3 ) ∈ Fin ) |
7 |
|
3nn |
⊢ 3 ∈ ℕ |
8 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) |
9 |
7 8
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 3 ) |
10 |
|
ne0i |
⊢ ( 0 ∈ ( 0 ..^ 3 ) → ( 0 ..^ 3 ) ≠ ∅ ) |
11 |
9 10
|
mp1i |
⊢ ( 𝜑 → ( 0 ..^ 3 ) ≠ ∅ ) |
12 |
1 2 3
|
s3cld |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word ℝ+ ) |
13 |
|
wrdf |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word ℝ+ → 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ⟶ ℝ+ ) |
14 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) = 3 |
15 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
16 |
14 15
|
eqtri |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) = ( 2 + 1 ) |
17 |
16
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) = ( 0 ..^ ( 2 + 1 ) ) |
18 |
17
|
feq2i |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ⟶ ℝ+ ↔ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( 2 + 1 ) ) ⟶ ℝ+ ) |
19 |
13 18
|
sylib |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word ℝ+ → 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( 2 + 1 ) ) ⟶ ℝ+ ) |
20 |
15
|
oveq2i |
⊢ ( 0 ..^ 3 ) = ( 0 ..^ ( 2 + 1 ) ) |
21 |
20
|
feq2i |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ ℝ+ ↔ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( 2 + 1 ) ) ⟶ ℝ+ ) |
22 |
19 21
|
sylibr |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word ℝ+ → 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ ℝ+ ) |
23 |
12 22
|
syl |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ ℝ+ ) |
24 |
4 6 11 23
|
amgmlem |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) ↑𝑐 ( 1 / ( ♯ ‘ ( 0 ..^ 3 ) ) ) ) ≤ ( ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) / ( ♯ ‘ ( 0 ..^ 3 ) ) ) ) |
25 |
|
cnring |
⊢ ℂfld ∈ Ring |
26 |
4
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
27 |
25 26
|
mp1i |
⊢ ( 𝜑 → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
28 |
1
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
29 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
30 |
3
|
rpcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
31 |
28 29 30
|
jca32 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) ) |
32 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
33 |
4 32
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
34 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
35 |
4 34
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
36 |
33 35
|
gsumws3 |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) ) → ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
37 |
27 31 36
|
syl2anc |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
38 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
39 |
|
hashfzo0 |
⊢ ( 3 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
40 |
38 39
|
mp1i |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 3 ) ) = 3 ) |
41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ ( 0 ..^ 3 ) ) ) = ( 1 / 3 ) ) |
42 |
37 41
|
oveq12d |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) ↑𝑐 ( 1 / ( ♯ ‘ ( 0 ..^ 3 ) ) ) ) = ( ( 𝐴 · ( 𝐵 · 𝐶 ) ) ↑𝑐 ( 1 / 3 ) ) ) |
43 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
44 |
25 43
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Mnd ) |
45 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
46 |
32 45
|
gsumws3 |
⊢ ( ( ℂfld ∈ Mnd ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) ) → ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |
47 |
44 31 46
|
syl2anc |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) ) |
48 |
47 40
|
oveq12d |
⊢ ( 𝜑 → ( ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 ”〉 ) / ( ♯ ‘ ( 0 ..^ 3 ) ) ) = ( ( 𝐴 + ( 𝐵 + 𝐶 ) ) / 3 ) ) |
49 |
24 42 48
|
3brtr3d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 𝐵 · 𝐶 ) ) ↑𝑐 ( 1 / 3 ) ) ≤ ( ( 𝐴 + ( 𝐵 + 𝐶 ) ) / 3 ) ) |