| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgm3d.0 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | amgm3d.1 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 3 |  | amgm3d.2 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 4 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 5 |  | fzofi | ⊢ ( 0 ..^ 3 )  ∈  Fin | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ( 0 ..^ 3 )  ∈  Fin ) | 
						
							| 7 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 8 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 3 )  ↔  3  ∈  ℕ ) | 
						
							| 9 | 7 8 | mpbir | ⊢ 0  ∈  ( 0 ..^ 3 ) | 
						
							| 10 |  | ne0i | ⊢ ( 0  ∈  ( 0 ..^ 3 )  →  ( 0 ..^ 3 )  ≠  ∅ ) | 
						
							| 11 | 9 10 | mp1i | ⊢ ( 𝜑  →  ( 0 ..^ 3 )  ≠  ∅ ) | 
						
							| 12 | 1 2 3 | s3cld | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  Word  ℝ+ ) | 
						
							| 13 |  | wrdf | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  Word  ℝ+  →  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 14 |  | s3len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 )  =  3 | 
						
							| 15 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 16 | 14 15 | eqtri | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 )  =  ( 2  +  1 ) | 
						
							| 17 | 16 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) )  =  ( 0 ..^ ( 2  +  1 ) ) | 
						
							| 18 | 17 | feq2i | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ⟶ ℝ+  ↔  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( 2  +  1 ) ) ⟶ ℝ+ ) | 
						
							| 19 | 13 18 | sylib | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  Word  ℝ+  →  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( 2  +  1 ) ) ⟶ ℝ+ ) | 
						
							| 20 | 15 | oveq2i | ⊢ ( 0 ..^ 3 )  =  ( 0 ..^ ( 2  +  1 ) ) | 
						
							| 21 | 20 | feq2i | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ ℝ+  ↔  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ ( 2  +  1 ) ) ⟶ ℝ+ ) | 
						
							| 22 | 19 21 | sylibr | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  Word  ℝ+  →  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ ℝ+ ) | 
						
							| 23 | 12 22 | syl | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ..^ 3 ) ⟶ ℝ+ ) | 
						
							| 24 | 4 6 11 23 | amgmlem | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 ) ↑𝑐 ( 1  /  ( ♯ ‘ ( 0 ..^ 3 ) ) ) )  ≤  ( ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 )  /  ( ♯ ‘ ( 0 ..^ 3 ) ) ) ) | 
						
							| 25 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 26 | 4 | ringmgp | ⊢ ( ℂfld  ∈  Ring  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 27 | 25 26 | mp1i | ⊢ ( 𝜑  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 28 | 1 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 29 | 2 | rpcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 30 | 3 | rpcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 31 | 28 29 30 | jca32 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ ) ) ) | 
						
							| 32 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 33 | 4 32 | mgpbas | ⊢ ℂ  =  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 34 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 35 | 4 34 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 36 | 33 35 | gsumws3 | ⊢ ( ( ( mulGrp ‘ ℂfld )  ∈  Mnd  ∧  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ ) ) )  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 )  =  ( 𝐴  ·  ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 37 | 27 31 36 | syl2anc | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 )  =  ( 𝐴  ·  ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 38 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 39 |  | hashfzo0 | ⊢ ( 3  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 3 ) )  =  3 ) | 
						
							| 40 | 38 39 | mp1i | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ..^ 3 ) )  =  3 ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝜑  →  ( 1  /  ( ♯ ‘ ( 0 ..^ 3 ) ) )  =  ( 1  /  3 ) ) | 
						
							| 42 | 37 41 | oveq12d | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 ) ↑𝑐 ( 1  /  ( ♯ ‘ ( 0 ..^ 3 ) ) ) )  =  ( ( 𝐴  ·  ( 𝐵  ·  𝐶 ) ) ↑𝑐 ( 1  /  3 ) ) ) | 
						
							| 43 |  | ringmnd | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Mnd ) | 
						
							| 44 | 25 43 | mp1i | ⊢ ( 𝜑  →  ℂfld  ∈  Mnd ) | 
						
							| 45 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 46 | 32 45 | gsumws3 | ⊢ ( ( ℂfld  ∈  Mnd  ∧  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ ) ) )  →  ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 )  =  ( 𝐴  +  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 47 | 44 31 46 | syl2anc | ⊢ ( 𝜑  →  ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 )  =  ( 𝐴  +  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 48 | 47 40 | oveq12d | ⊢ ( 𝜑  →  ( ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 ”〉 )  /  ( ♯ ‘ ( 0 ..^ 3 ) ) )  =  ( ( 𝐴  +  ( 𝐵  +  𝐶 ) )  /  3 ) ) | 
						
							| 49 | 24 42 48 | 3brtr3d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  ( 𝐵  ·  𝐶 ) ) ↑𝑐 ( 1  /  3 ) )  ≤  ( ( 𝐴  +  ( 𝐵  +  𝐶 ) )  /  3 ) ) |