| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgm3d.0 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | amgm3d.1 |  |-  ( ph -> B e. RR+ ) | 
						
							| 3 |  | amgm3d.2 |  |-  ( ph -> C e. RR+ ) | 
						
							| 4 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 5 |  | fzofi |  |-  ( 0 ..^ 3 ) e. Fin | 
						
							| 6 | 5 | a1i |  |-  ( ph -> ( 0 ..^ 3 ) e. Fin ) | 
						
							| 7 |  | 3nn |  |-  3 e. NN | 
						
							| 8 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) | 
						
							| 9 | 7 8 | mpbir |  |-  0 e. ( 0 ..^ 3 ) | 
						
							| 10 |  | ne0i |  |-  ( 0 e. ( 0 ..^ 3 ) -> ( 0 ..^ 3 ) =/= (/) ) | 
						
							| 11 | 9 10 | mp1i |  |-  ( ph -> ( 0 ..^ 3 ) =/= (/) ) | 
						
							| 12 | 1 2 3 | s3cld |  |-  ( ph -> <" A B C "> e. Word RR+ ) | 
						
							| 13 |  | wrdf |  |-  ( <" A B C "> e. Word RR+ -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> RR+ ) | 
						
							| 14 |  | s3len |  |-  ( # ` <" A B C "> ) = 3 | 
						
							| 15 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 16 | 14 15 | eqtri |  |-  ( # ` <" A B C "> ) = ( 2 + 1 ) | 
						
							| 17 | 16 | oveq2i |  |-  ( 0 ..^ ( # ` <" A B C "> ) ) = ( 0 ..^ ( 2 + 1 ) ) | 
						
							| 18 | 17 | feq2i |  |-  ( <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> RR+ <-> <" A B C "> : ( 0 ..^ ( 2 + 1 ) ) --> RR+ ) | 
						
							| 19 | 13 18 | sylib |  |-  ( <" A B C "> e. Word RR+ -> <" A B C "> : ( 0 ..^ ( 2 + 1 ) ) --> RR+ ) | 
						
							| 20 | 15 | oveq2i |  |-  ( 0 ..^ 3 ) = ( 0 ..^ ( 2 + 1 ) ) | 
						
							| 21 | 20 | feq2i |  |-  ( <" A B C "> : ( 0 ..^ 3 ) --> RR+ <-> <" A B C "> : ( 0 ..^ ( 2 + 1 ) ) --> RR+ ) | 
						
							| 22 | 19 21 | sylibr |  |-  ( <" A B C "> e. Word RR+ -> <" A B C "> : ( 0 ..^ 3 ) --> RR+ ) | 
						
							| 23 | 12 22 | syl |  |-  ( ph -> <" A B C "> : ( 0 ..^ 3 ) --> RR+ ) | 
						
							| 24 | 4 6 11 23 | amgmlem |  |-  ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C "> ) ^c ( 1 / ( # ` ( 0 ..^ 3 ) ) ) ) <_ ( ( CCfld gsum <" A B C "> ) / ( # ` ( 0 ..^ 3 ) ) ) ) | 
						
							| 25 |  | cnring |  |-  CCfld e. Ring | 
						
							| 26 | 4 | ringmgp |  |-  ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 27 | 25 26 | mp1i |  |-  ( ph -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 28 | 1 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 29 | 2 | rpcnd |  |-  ( ph -> B e. CC ) | 
						
							| 30 | 3 | rpcnd |  |-  ( ph -> C e. CC ) | 
						
							| 31 | 28 29 30 | jca32 |  |-  ( ph -> ( A e. CC /\ ( B e. CC /\ C e. CC ) ) ) | 
						
							| 32 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 33 | 4 32 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 34 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 35 | 4 34 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 36 | 33 35 | gsumws3 |  |-  ( ( ( mulGrp ` CCfld ) e. Mnd /\ ( A e. CC /\ ( B e. CC /\ C e. CC ) ) ) -> ( ( mulGrp ` CCfld ) gsum <" A B C "> ) = ( A x. ( B x. C ) ) ) | 
						
							| 37 | 27 31 36 | syl2anc |  |-  ( ph -> ( ( mulGrp ` CCfld ) gsum <" A B C "> ) = ( A x. ( B x. C ) ) ) | 
						
							| 38 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 39 |  | hashfzo0 |  |-  ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) | 
						
							| 40 | 38 39 | mp1i |  |-  ( ph -> ( # ` ( 0 ..^ 3 ) ) = 3 ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ph -> ( 1 / ( # ` ( 0 ..^ 3 ) ) ) = ( 1 / 3 ) ) | 
						
							| 42 | 37 41 | oveq12d |  |-  ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C "> ) ^c ( 1 / ( # ` ( 0 ..^ 3 ) ) ) ) = ( ( A x. ( B x. C ) ) ^c ( 1 / 3 ) ) ) | 
						
							| 43 |  | ringmnd |  |-  ( CCfld e. Ring -> CCfld e. Mnd ) | 
						
							| 44 | 25 43 | mp1i |  |-  ( ph -> CCfld e. Mnd ) | 
						
							| 45 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 46 | 32 45 | gsumws3 |  |-  ( ( CCfld e. Mnd /\ ( A e. CC /\ ( B e. CC /\ C e. CC ) ) ) -> ( CCfld gsum <" A B C "> ) = ( A + ( B + C ) ) ) | 
						
							| 47 | 44 31 46 | syl2anc |  |-  ( ph -> ( CCfld gsum <" A B C "> ) = ( A + ( B + C ) ) ) | 
						
							| 48 | 47 40 | oveq12d |  |-  ( ph -> ( ( CCfld gsum <" A B C "> ) / ( # ` ( 0 ..^ 3 ) ) ) = ( ( A + ( B + C ) ) / 3 ) ) | 
						
							| 49 | 24 42 48 | 3brtr3d |  |-  ( ph -> ( ( A x. ( B x. C ) ) ^c ( 1 / 3 ) ) <_ ( ( A + ( B + C ) ) / 3 ) ) |