Step |
Hyp |
Ref |
Expression |
1 |
|
amgm3d.0 |
|- ( ph -> A e. RR+ ) |
2 |
|
amgm3d.1 |
|- ( ph -> B e. RR+ ) |
3 |
|
amgm3d.2 |
|- ( ph -> C e. RR+ ) |
4 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
5 |
|
fzofi |
|- ( 0 ..^ 3 ) e. Fin |
6 |
5
|
a1i |
|- ( ph -> ( 0 ..^ 3 ) e. Fin ) |
7 |
|
3nn |
|- 3 e. NN |
8 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) |
9 |
7 8
|
mpbir |
|- 0 e. ( 0 ..^ 3 ) |
10 |
|
ne0i |
|- ( 0 e. ( 0 ..^ 3 ) -> ( 0 ..^ 3 ) =/= (/) ) |
11 |
9 10
|
mp1i |
|- ( ph -> ( 0 ..^ 3 ) =/= (/) ) |
12 |
1 2 3
|
s3cld |
|- ( ph -> <" A B C "> e. Word RR+ ) |
13 |
|
wrdf |
|- ( <" A B C "> e. Word RR+ -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> RR+ ) |
14 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
15 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
16 |
14 15
|
eqtri |
|- ( # ` <" A B C "> ) = ( 2 + 1 ) |
17 |
16
|
oveq2i |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = ( 0 ..^ ( 2 + 1 ) ) |
18 |
17
|
feq2i |
|- ( <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> RR+ <-> <" A B C "> : ( 0 ..^ ( 2 + 1 ) ) --> RR+ ) |
19 |
13 18
|
sylib |
|- ( <" A B C "> e. Word RR+ -> <" A B C "> : ( 0 ..^ ( 2 + 1 ) ) --> RR+ ) |
20 |
15
|
oveq2i |
|- ( 0 ..^ 3 ) = ( 0 ..^ ( 2 + 1 ) ) |
21 |
20
|
feq2i |
|- ( <" A B C "> : ( 0 ..^ 3 ) --> RR+ <-> <" A B C "> : ( 0 ..^ ( 2 + 1 ) ) --> RR+ ) |
22 |
19 21
|
sylibr |
|- ( <" A B C "> e. Word RR+ -> <" A B C "> : ( 0 ..^ 3 ) --> RR+ ) |
23 |
12 22
|
syl |
|- ( ph -> <" A B C "> : ( 0 ..^ 3 ) --> RR+ ) |
24 |
4 6 11 23
|
amgmlem |
|- ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C "> ) ^c ( 1 / ( # ` ( 0 ..^ 3 ) ) ) ) <_ ( ( CCfld gsum <" A B C "> ) / ( # ` ( 0 ..^ 3 ) ) ) ) |
25 |
|
cnring |
|- CCfld e. Ring |
26 |
4
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
27 |
25 26
|
mp1i |
|- ( ph -> ( mulGrp ` CCfld ) e. Mnd ) |
28 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
29 |
2
|
rpcnd |
|- ( ph -> B e. CC ) |
30 |
3
|
rpcnd |
|- ( ph -> C e. CC ) |
31 |
28 29 30
|
jca32 |
|- ( ph -> ( A e. CC /\ ( B e. CC /\ C e. CC ) ) ) |
32 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
33 |
4 32
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
34 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
35 |
4 34
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
36 |
33 35
|
gsumws3 |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ ( A e. CC /\ ( B e. CC /\ C e. CC ) ) ) -> ( ( mulGrp ` CCfld ) gsum <" A B C "> ) = ( A x. ( B x. C ) ) ) |
37 |
27 31 36
|
syl2anc |
|- ( ph -> ( ( mulGrp ` CCfld ) gsum <" A B C "> ) = ( A x. ( B x. C ) ) ) |
38 |
|
3nn0 |
|- 3 e. NN0 |
39 |
|
hashfzo0 |
|- ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
40 |
38 39
|
mp1i |
|- ( ph -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
41 |
40
|
oveq2d |
|- ( ph -> ( 1 / ( # ` ( 0 ..^ 3 ) ) ) = ( 1 / 3 ) ) |
42 |
37 41
|
oveq12d |
|- ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C "> ) ^c ( 1 / ( # ` ( 0 ..^ 3 ) ) ) ) = ( ( A x. ( B x. C ) ) ^c ( 1 / 3 ) ) ) |
43 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
44 |
25 43
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
45 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
46 |
32 45
|
gsumws3 |
|- ( ( CCfld e. Mnd /\ ( A e. CC /\ ( B e. CC /\ C e. CC ) ) ) -> ( CCfld gsum <" A B C "> ) = ( A + ( B + C ) ) ) |
47 |
44 31 46
|
syl2anc |
|- ( ph -> ( CCfld gsum <" A B C "> ) = ( A + ( B + C ) ) ) |
48 |
47 40
|
oveq12d |
|- ( ph -> ( ( CCfld gsum <" A B C "> ) / ( # ` ( 0 ..^ 3 ) ) ) = ( ( A + ( B + C ) ) / 3 ) ) |
49 |
24 42 48
|
3brtr3d |
|- ( ph -> ( ( A x. ( B x. C ) ) ^c ( 1 / 3 ) ) <_ ( ( A + ( B + C ) ) / 3 ) ) |