Step |
Hyp |
Ref |
Expression |
1 |
|
amgm4d.0 |
|- ( ph -> A e. RR+ ) |
2 |
|
amgm4d.1 |
|- ( ph -> B e. RR+ ) |
3 |
|
amgm4d.2 |
|- ( ph -> C e. RR+ ) |
4 |
|
amgm4d.3 |
|- ( ph -> D e. RR+ ) |
5 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
6 |
|
fzofi |
|- ( 0 ..^ 4 ) e. Fin |
7 |
6
|
a1i |
|- ( ph -> ( 0 ..^ 4 ) e. Fin ) |
8 |
|
4nn |
|- 4 e. NN |
9 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 4 ) <-> 4 e. NN ) |
10 |
8 9
|
mpbir |
|- 0 e. ( 0 ..^ 4 ) |
11 |
|
ne0i |
|- ( 0 e. ( 0 ..^ 4 ) -> ( 0 ..^ 4 ) =/= (/) ) |
12 |
10 11
|
mp1i |
|- ( ph -> ( 0 ..^ 4 ) =/= (/) ) |
13 |
1 2 3 4
|
s4cld |
|- ( ph -> <" A B C D "> e. Word RR+ ) |
14 |
|
wrdf |
|- ( <" A B C D "> e. Word RR+ -> <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> RR+ ) |
15 |
13 14
|
syl |
|- ( ph -> <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> RR+ ) |
16 |
|
s4len |
|- ( # ` <" A B C D "> ) = 4 |
17 |
16
|
a1i |
|- ( ph -> ( # ` <" A B C D "> ) = 4 ) |
18 |
17
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` <" A B C D "> ) ) = ( 0 ..^ 4 ) ) |
19 |
18
|
feq2d |
|- ( ph -> ( <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> RR+ <-> <" A B C D "> : ( 0 ..^ 4 ) --> RR+ ) ) |
20 |
15 19
|
mpbid |
|- ( ph -> <" A B C D "> : ( 0 ..^ 4 ) --> RR+ ) |
21 |
5 7 12 20
|
amgmlem |
|- ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) ^c ( 1 / ( # ` ( 0 ..^ 4 ) ) ) ) <_ ( ( CCfld gsum <" A B C D "> ) / ( # ` ( 0 ..^ 4 ) ) ) ) |
22 |
|
cnring |
|- CCfld e. Ring |
23 |
5
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
24 |
22 23
|
mp1i |
|- ( ph -> ( mulGrp ` CCfld ) e. Mnd ) |
25 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
26 |
2
|
rpcnd |
|- ( ph -> B e. CC ) |
27 |
3
|
rpcnd |
|- ( ph -> C e. CC ) |
28 |
4
|
rpcnd |
|- ( ph -> D e. CC ) |
29 |
27 28
|
jca |
|- ( ph -> ( C e. CC /\ D e. CC ) ) |
30 |
25 26 29
|
jca32 |
|- ( ph -> ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ D e. CC ) ) ) ) |
31 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
32 |
5 31
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
33 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
34 |
5 33
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
35 |
32 34
|
gsumws4 |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ D e. CC ) ) ) ) -> ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) = ( A x. ( B x. ( C x. D ) ) ) ) |
36 |
24 30 35
|
syl2anc |
|- ( ph -> ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) = ( A x. ( B x. ( C x. D ) ) ) ) |
37 |
|
4nn0 |
|- 4 e. NN0 |
38 |
|
hashfzo0 |
|- ( 4 e. NN0 -> ( # ` ( 0 ..^ 4 ) ) = 4 ) |
39 |
37 38
|
mp1i |
|- ( ph -> ( # ` ( 0 ..^ 4 ) ) = 4 ) |
40 |
39
|
oveq2d |
|- ( ph -> ( 1 / ( # ` ( 0 ..^ 4 ) ) ) = ( 1 / 4 ) ) |
41 |
36 40
|
oveq12d |
|- ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) ^c ( 1 / ( # ` ( 0 ..^ 4 ) ) ) ) = ( ( A x. ( B x. ( C x. D ) ) ) ^c ( 1 / 4 ) ) ) |
42 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
43 |
22 42
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
44 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
45 |
31 44
|
gsumws4 |
|- ( ( CCfld e. Mnd /\ ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ D e. CC ) ) ) ) -> ( CCfld gsum <" A B C D "> ) = ( A + ( B + ( C + D ) ) ) ) |
46 |
43 30 45
|
syl2anc |
|- ( ph -> ( CCfld gsum <" A B C D "> ) = ( A + ( B + ( C + D ) ) ) ) |
47 |
46 39
|
oveq12d |
|- ( ph -> ( ( CCfld gsum <" A B C D "> ) / ( # ` ( 0 ..^ 4 ) ) ) = ( ( A + ( B + ( C + D ) ) ) / 4 ) ) |
48 |
21 41 47
|
3brtr3d |
|- ( ph -> ( ( A x. ( B x. ( C x. D ) ) ) ^c ( 1 / 4 ) ) <_ ( ( A + ( B + ( C + D ) ) ) / 4 ) ) |