| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgm4d.0 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | amgm4d.1 |  |-  ( ph -> B e. RR+ ) | 
						
							| 3 |  | amgm4d.2 |  |-  ( ph -> C e. RR+ ) | 
						
							| 4 |  | amgm4d.3 |  |-  ( ph -> D e. RR+ ) | 
						
							| 5 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 6 |  | fzofi |  |-  ( 0 ..^ 4 ) e. Fin | 
						
							| 7 | 6 | a1i |  |-  ( ph -> ( 0 ..^ 4 ) e. Fin ) | 
						
							| 8 |  | 4nn |  |-  4 e. NN | 
						
							| 9 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ 4 ) <-> 4 e. NN ) | 
						
							| 10 | 8 9 | mpbir |  |-  0 e. ( 0 ..^ 4 ) | 
						
							| 11 |  | ne0i |  |-  ( 0 e. ( 0 ..^ 4 ) -> ( 0 ..^ 4 ) =/= (/) ) | 
						
							| 12 | 10 11 | mp1i |  |-  ( ph -> ( 0 ..^ 4 ) =/= (/) ) | 
						
							| 13 | 1 2 3 4 | s4cld |  |-  ( ph -> <" A B C D "> e. Word RR+ ) | 
						
							| 14 |  | wrdf |  |-  ( <" A B C D "> e. Word RR+ -> <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> RR+ ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> RR+ ) | 
						
							| 16 |  | s4len |  |-  ( # ` <" A B C D "> ) = 4 | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( # ` <" A B C D "> ) = 4 ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` <" A B C D "> ) ) = ( 0 ..^ 4 ) ) | 
						
							| 19 | 18 | feq2d |  |-  ( ph -> ( <" A B C D "> : ( 0 ..^ ( # ` <" A B C D "> ) ) --> RR+ <-> <" A B C D "> : ( 0 ..^ 4 ) --> RR+ ) ) | 
						
							| 20 | 15 19 | mpbid |  |-  ( ph -> <" A B C D "> : ( 0 ..^ 4 ) --> RR+ ) | 
						
							| 21 | 5 7 12 20 | amgmlem |  |-  ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) ^c ( 1 / ( # ` ( 0 ..^ 4 ) ) ) ) <_ ( ( CCfld gsum <" A B C D "> ) / ( # ` ( 0 ..^ 4 ) ) ) ) | 
						
							| 22 |  | cnring |  |-  CCfld e. Ring | 
						
							| 23 | 5 | ringmgp |  |-  ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 24 | 22 23 | mp1i |  |-  ( ph -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 25 | 1 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 26 | 2 | rpcnd |  |-  ( ph -> B e. CC ) | 
						
							| 27 | 3 | rpcnd |  |-  ( ph -> C e. CC ) | 
						
							| 28 | 4 | rpcnd |  |-  ( ph -> D e. CC ) | 
						
							| 29 | 27 28 | jca |  |-  ( ph -> ( C e. CC /\ D e. CC ) ) | 
						
							| 30 | 25 26 29 | jca32 |  |-  ( ph -> ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ D e. CC ) ) ) ) | 
						
							| 31 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 32 | 5 31 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 33 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 34 | 5 33 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 35 | 32 34 | gsumws4 |  |-  ( ( ( mulGrp ` CCfld ) e. Mnd /\ ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ D e. CC ) ) ) ) -> ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) = ( A x. ( B x. ( C x. D ) ) ) ) | 
						
							| 36 | 24 30 35 | syl2anc |  |-  ( ph -> ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) = ( A x. ( B x. ( C x. D ) ) ) ) | 
						
							| 37 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 38 |  | hashfzo0 |  |-  ( 4 e. NN0 -> ( # ` ( 0 ..^ 4 ) ) = 4 ) | 
						
							| 39 | 37 38 | mp1i |  |-  ( ph -> ( # ` ( 0 ..^ 4 ) ) = 4 ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ph -> ( 1 / ( # ` ( 0 ..^ 4 ) ) ) = ( 1 / 4 ) ) | 
						
							| 41 | 36 40 | oveq12d |  |-  ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B C D "> ) ^c ( 1 / ( # ` ( 0 ..^ 4 ) ) ) ) = ( ( A x. ( B x. ( C x. D ) ) ) ^c ( 1 / 4 ) ) ) | 
						
							| 42 |  | ringmnd |  |-  ( CCfld e. Ring -> CCfld e. Mnd ) | 
						
							| 43 | 22 42 | mp1i |  |-  ( ph -> CCfld e. Mnd ) | 
						
							| 44 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 45 | 31 44 | gsumws4 |  |-  ( ( CCfld e. Mnd /\ ( A e. CC /\ ( B e. CC /\ ( C e. CC /\ D e. CC ) ) ) ) -> ( CCfld gsum <" A B C D "> ) = ( A + ( B + ( C + D ) ) ) ) | 
						
							| 46 | 43 30 45 | syl2anc |  |-  ( ph -> ( CCfld gsum <" A B C D "> ) = ( A + ( B + ( C + D ) ) ) ) | 
						
							| 47 | 46 39 | oveq12d |  |-  ( ph -> ( ( CCfld gsum <" A B C D "> ) / ( # ` ( 0 ..^ 4 ) ) ) = ( ( A + ( B + ( C + D ) ) ) / 4 ) ) | 
						
							| 48 | 21 41 47 | 3brtr3d |  |-  ( ph -> ( ( A x. ( B x. ( C x. D ) ) ) ^c ( 1 / 4 ) ) <_ ( ( A + ( B + ( C + D ) ) ) / 4 ) ) |