Step |
Hyp |
Ref |
Expression |
1 |
|
amgm4d.0 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
amgm4d.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
amgm4d.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
amgm4d.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
5 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
6 |
|
fzofi |
⊢ ( 0 ..^ 4 ) ∈ Fin |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 4 ) ∈ Fin ) |
8 |
|
4nn |
⊢ 4 ∈ ℕ |
9 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 4 ) ↔ 4 ∈ ℕ ) |
10 |
8 9
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 4 ) |
11 |
|
ne0i |
⊢ ( 0 ∈ ( 0 ..^ 4 ) → ( 0 ..^ 4 ) ≠ ∅ ) |
12 |
10 11
|
mp1i |
⊢ ( 𝜑 → ( 0 ..^ 4 ) ≠ ∅ ) |
13 |
1 2 3 4
|
s4cld |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∈ Word ℝ+ ) |
14 |
|
wrdf |
⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∈ Word ℝ+ → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ ℝ+ ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ ℝ+ ) |
16 |
|
s4len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 4 |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 4 ) |
18 |
17
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) = ( 0 ..^ 4 ) ) |
19 |
18
|
feq2d |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ ℝ+ ↔ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ 4 ) ⟶ ℝ+ ) ) |
20 |
15 19
|
mpbid |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ 4 ) ⟶ ℝ+ ) |
21 |
5 7 12 20
|
amgmlem |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ↑𝑐 ( 1 / ( ♯ ‘ ( 0 ..^ 4 ) ) ) ) ≤ ( ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) / ( ♯ ‘ ( 0 ..^ 4 ) ) ) ) |
22 |
|
cnring |
⊢ ℂfld ∈ Ring |
23 |
5
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
24 |
22 23
|
mp1i |
⊢ ( 𝜑 → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
25 |
1
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
26 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
27 |
3
|
rpcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
28 |
4
|
rpcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
29 |
27 28
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) |
30 |
25 26 29
|
jca32 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ) ) |
31 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
32 |
5 31
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
33 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
34 |
5 33
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
35 |
32 34
|
gsumws4 |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ) ) → ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) ) |
36 |
24 30 35
|
syl2anc |
⊢ ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) ) |
37 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
38 |
|
hashfzo0 |
⊢ ( 4 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 4 ) ) = 4 ) |
39 |
37 38
|
mp1i |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 4 ) ) = 4 ) |
40 |
39
|
oveq2d |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ ( 0 ..^ 4 ) ) ) = ( 1 / 4 ) ) |
41 |
36 40
|
oveq12d |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ ℂfld ) Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ↑𝑐 ( 1 / ( ♯ ‘ ( 0 ..^ 4 ) ) ) ) = ( ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) ↑𝑐 ( 1 / 4 ) ) ) |
42 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
43 |
22 42
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Mnd ) |
44 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
45 |
31 44
|
gsumws4 |
⊢ ( ( ℂfld ∈ Mnd ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ) ) → ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) |
46 |
43 30 45
|
syl2anc |
⊢ ( 𝜑 → ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) |
47 |
46 39
|
oveq12d |
⊢ ( 𝜑 → ( ( ℂfld Σg 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) / ( ♯ ‘ ( 0 ..^ 4 ) ) ) = ( ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) / 4 ) ) |
48 |
21 41 47
|
3brtr3d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) ↑𝑐 ( 1 / 4 ) ) ≤ ( ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) / 4 ) ) |