Metamath Proof Explorer


Theorem amgm4d

Description: Arithmetic-geometric mean inequality for n = 4 . (Contributed by Stanislas Polu, 11-Sep-2020)

Ref Expression
Hypotheses amgm4d.0 ( 𝜑𝐴 ∈ ℝ+ )
amgm4d.1 ( 𝜑𝐵 ∈ ℝ+ )
amgm4d.2 ( 𝜑𝐶 ∈ ℝ+ )
amgm4d.3 ( 𝜑𝐷 ∈ ℝ+ )
Assertion amgm4d ( 𝜑 → ( ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) ↑𝑐 ( 1 / 4 ) ) ≤ ( ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) / 4 ) )

Proof

Step Hyp Ref Expression
1 amgm4d.0 ( 𝜑𝐴 ∈ ℝ+ )
2 amgm4d.1 ( 𝜑𝐵 ∈ ℝ+ )
3 amgm4d.2 ( 𝜑𝐶 ∈ ℝ+ )
4 amgm4d.3 ( 𝜑𝐷 ∈ ℝ+ )
5 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
6 fzofi ( 0 ..^ 4 ) ∈ Fin
7 6 a1i ( 𝜑 → ( 0 ..^ 4 ) ∈ Fin )
8 4nn 4 ∈ ℕ
9 lbfzo0 ( 0 ∈ ( 0 ..^ 4 ) ↔ 4 ∈ ℕ )
10 8 9 mpbir 0 ∈ ( 0 ..^ 4 )
11 ne0i ( 0 ∈ ( 0 ..^ 4 ) → ( 0 ..^ 4 ) ≠ ∅ )
12 10 11 mp1i ( 𝜑 → ( 0 ..^ 4 ) ≠ ∅ )
13 1 2 3 4 s4cld ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ∈ Word ℝ+ )
14 wrdf ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ∈ Word ℝ+ → ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ : ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) ) ⟶ ℝ+ )
15 13 14 syl ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ : ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) ) ⟶ ℝ+ )
16 s4len ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = 4
17 16 a1i ( 𝜑 → ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = 4 )
18 17 oveq2d ( 𝜑 → ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) ) = ( 0 ..^ 4 ) )
19 18 feq2d ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ : ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) ) ⟶ ℝ+ ↔ ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ : ( 0 ..^ 4 ) ⟶ ℝ+ ) )
20 15 19 mpbid ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ : ( 0 ..^ 4 ) ⟶ ℝ+ )
21 5 7 12 20 amgmlem ( 𝜑 → ( ( ( mulGrp ‘ ℂfld ) Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) ↑𝑐 ( 1 / ( ♯ ‘ ( 0 ..^ 4 ) ) ) ) ≤ ( ( ℂfld Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) / ( ♯ ‘ ( 0 ..^ 4 ) ) ) )
22 cnring fld ∈ Ring
23 5 ringmgp ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd )
24 22 23 mp1i ( 𝜑 → ( mulGrp ‘ ℂfld ) ∈ Mnd )
25 1 rpcnd ( 𝜑𝐴 ∈ ℂ )
26 2 rpcnd ( 𝜑𝐵 ∈ ℂ )
27 3 rpcnd ( 𝜑𝐶 ∈ ℂ )
28 4 rpcnd ( 𝜑𝐷 ∈ ℂ )
29 27 28 jca ( 𝜑 → ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) )
30 25 26 29 jca32 ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ) )
31 cnfldbas ℂ = ( Base ‘ ℂfld )
32 5 31 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
33 cnfldmul · = ( .r ‘ ℂfld )
34 5 33 mgpplusg · = ( +g ‘ ( mulGrp ‘ ℂfld ) )
35 32 34 gsumws4 ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ) ) → ( ( mulGrp ‘ ℂfld ) Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) )
36 24 30 35 syl2anc ( 𝜑 → ( ( mulGrp ‘ ℂfld ) Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) )
37 4nn0 4 ∈ ℕ0
38 hashfzo0 ( 4 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 4 ) ) = 4 )
39 37 38 mp1i ( 𝜑 → ( ♯ ‘ ( 0 ..^ 4 ) ) = 4 )
40 39 oveq2d ( 𝜑 → ( 1 / ( ♯ ‘ ( 0 ..^ 4 ) ) ) = ( 1 / 4 ) )
41 36 40 oveq12d ( 𝜑 → ( ( ( mulGrp ‘ ℂfld ) Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) ↑𝑐 ( 1 / ( ♯ ‘ ( 0 ..^ 4 ) ) ) ) = ( ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) ↑𝑐 ( 1 / 4 ) ) )
42 ringmnd ( ℂfld ∈ Ring → ℂfld ∈ Mnd )
43 22 42 mp1i ( 𝜑 → ℂfld ∈ Mnd )
44 cnfldadd + = ( +g ‘ ℂfld )
45 31 44 gsumws4 ( ( ℂfld ∈ Mnd ∧ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ) ) → ( ℂfld Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) )
46 43 30 45 syl2anc ( 𝜑 → ( ℂfld Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) )
47 46 39 oveq12d ( 𝜑 → ( ( ℂfld Σg ⟨“ 𝐴 𝐵 𝐶 𝐷 ”⟩ ) / ( ♯ ‘ ( 0 ..^ 4 ) ) ) = ( ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) / 4 ) )
48 21 41 47 3brtr3d ( 𝜑 → ( ( 𝐴 · ( 𝐵 · ( 𝐶 · 𝐷 ) ) ) ↑𝑐 ( 1 / 4 ) ) ≤ ( ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) / 4 ) )