| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgm4d.0 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | amgm4d.1 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 3 |  | amgm4d.2 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 4 |  | amgm4d.3 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ+ ) | 
						
							| 5 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 6 |  | fzofi | ⊢ ( 0 ..^ 4 )  ∈  Fin | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ( 0 ..^ 4 )  ∈  Fin ) | 
						
							| 8 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 9 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 4 )  ↔  4  ∈  ℕ ) | 
						
							| 10 | 8 9 | mpbir | ⊢ 0  ∈  ( 0 ..^ 4 ) | 
						
							| 11 |  | ne0i | ⊢ ( 0  ∈  ( 0 ..^ 4 )  →  ( 0 ..^ 4 )  ≠  ∅ ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( 𝜑  →  ( 0 ..^ 4 )  ≠  ∅ ) | 
						
							| 13 | 1 2 3 4 | s4cld | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉  ∈  Word  ℝ+ ) | 
						
							| 14 |  | wrdf | ⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉  ∈  Word  ℝ+  →  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ ℝ+ ) | 
						
							| 16 |  | s4len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  =  4 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  =  4 ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) )  =  ( 0 ..^ 4 ) ) | 
						
							| 19 | 18 | feq2d | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ) ⟶ ℝ+  ↔  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ 4 ) ⟶ ℝ+ ) ) | 
						
							| 20 | 15 19 | mpbid | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 : ( 0 ..^ 4 ) ⟶ ℝ+ ) | 
						
							| 21 | 5 7 12 20 | amgmlem | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ↑𝑐 ( 1  /  ( ♯ ‘ ( 0 ..^ 4 ) ) ) )  ≤  ( ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  /  ( ♯ ‘ ( 0 ..^ 4 ) ) ) ) | 
						
							| 22 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 23 | 5 | ringmgp | ⊢ ( ℂfld  ∈  Ring  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 24 | 22 23 | mp1i | ⊢ ( 𝜑  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 25 | 1 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 26 | 2 | rpcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 27 | 3 | rpcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 28 | 4 | rpcnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 29 | 27 28 | jca | ⊢ ( 𝜑  →  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) ) | 
						
							| 30 | 25 26 29 | jca32 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) ) ) ) | 
						
							| 31 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 32 | 5 31 | mgpbas | ⊢ ℂ  =  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 33 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 34 | 5 33 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 35 | 32 34 | gsumws4 | ⊢ ( ( ( mulGrp ‘ ℂfld )  ∈  Mnd  ∧  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) ) ) )  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  =  ( 𝐴  ·  ( 𝐵  ·  ( 𝐶  ·  𝐷 ) ) ) ) | 
						
							| 36 | 24 30 35 | syl2anc | ⊢ ( 𝜑  →  ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  =  ( 𝐴  ·  ( 𝐵  ·  ( 𝐶  ·  𝐷 ) ) ) ) | 
						
							| 37 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 38 |  | hashfzo0 | ⊢ ( 4  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 4 ) )  =  4 ) | 
						
							| 39 | 37 38 | mp1i | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ..^ 4 ) )  =  4 ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝜑  →  ( 1  /  ( ♯ ‘ ( 0 ..^ 4 ) ) )  =  ( 1  /  4 ) ) | 
						
							| 41 | 36 40 | oveq12d | ⊢ ( 𝜑  →  ( ( ( mulGrp ‘ ℂfld )  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) ↑𝑐 ( 1  /  ( ♯ ‘ ( 0 ..^ 4 ) ) ) )  =  ( ( 𝐴  ·  ( 𝐵  ·  ( 𝐶  ·  𝐷 ) ) ) ↑𝑐 ( 1  /  4 ) ) ) | 
						
							| 42 |  | ringmnd | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Mnd ) | 
						
							| 43 | 22 42 | mp1i | ⊢ ( 𝜑  →  ℂfld  ∈  Mnd ) | 
						
							| 44 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 45 | 31 44 | gsumws4 | ⊢ ( ( ℂfld  ∈  Mnd  ∧  ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐷  ∈  ℂ ) ) ) )  →  ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  =  ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 46 | 43 30 45 | syl2anc | ⊢ ( 𝜑  →  ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  =  ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 47 | 46 39 | oveq12d | ⊢ ( 𝜑  →  ( ( ℂfld  Σg  〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 )  /  ( ♯ ‘ ( 0 ..^ 4 ) ) )  =  ( ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) )  /  4 ) ) | 
						
							| 48 | 21 41 47 | 3brtr3d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  ( 𝐵  ·  ( 𝐶  ·  𝐷 ) ) ) ↑𝑐 ( 1  /  4 ) )  ≤  ( ( 𝐴  +  ( 𝐵  +  ( 𝐶  +  𝐷 ) ) )  /  4 ) ) |