Step |
Hyp |
Ref |
Expression |
1 |
|
amgm2d.0 |
|- ( ph -> A e. RR+ ) |
2 |
|
amgm2d.1 |
|- ( ph -> B e. RR+ ) |
3 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
4 |
|
fzofi |
|- ( 0 ..^ 2 ) e. Fin |
5 |
4
|
a1i |
|- ( ph -> ( 0 ..^ 2 ) e. Fin ) |
6 |
|
2nn |
|- 2 e. NN |
7 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) |
8 |
6 7
|
mpbir |
|- 0 e. ( 0 ..^ 2 ) |
9 |
8
|
ne0ii |
|- ( 0 ..^ 2 ) =/= (/) |
10 |
9
|
a1i |
|- ( ph -> ( 0 ..^ 2 ) =/= (/) ) |
11 |
1 2
|
s2cld |
|- ( ph -> <" A B "> e. Word RR+ ) |
12 |
|
wrdf |
|- ( <" A B "> e. Word RR+ -> <" A B "> : ( 0 ..^ ( # ` <" A B "> ) ) --> RR+ ) |
13 |
|
s2len |
|- ( # ` <" A B "> ) = 2 |
14 |
13
|
eqcomi |
|- 2 = ( # ` <" A B "> ) |
15 |
14
|
oveq2i |
|- ( 0 ..^ 2 ) = ( 0 ..^ ( # ` <" A B "> ) ) |
16 |
15
|
feq2i |
|- ( <" A B "> : ( 0 ..^ 2 ) --> RR+ <-> <" A B "> : ( 0 ..^ ( # ` <" A B "> ) ) --> RR+ ) |
17 |
12 16
|
sylibr |
|- ( <" A B "> e. Word RR+ -> <" A B "> : ( 0 ..^ 2 ) --> RR+ ) |
18 |
11 17
|
syl |
|- ( ph -> <" A B "> : ( 0 ..^ 2 ) --> RR+ ) |
19 |
3 5 10 18
|
amgmlem |
|- ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B "> ) ^c ( 1 / ( # ` ( 0 ..^ 2 ) ) ) ) <_ ( ( CCfld gsum <" A B "> ) / ( # ` ( 0 ..^ 2 ) ) ) ) |
20 |
|
cnring |
|- CCfld e. Ring |
21 |
3
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
22 |
20 21
|
mp1i |
|- ( ph -> ( mulGrp ` CCfld ) e. Mnd ) |
23 |
1
|
rpcnd |
|- ( ph -> A e. CC ) |
24 |
2
|
rpcnd |
|- ( ph -> B e. CC ) |
25 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
26 |
3 25
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
27 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
28 |
3 27
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
29 |
26 28
|
gsumws2 |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ A e. CC /\ B e. CC ) -> ( ( mulGrp ` CCfld ) gsum <" A B "> ) = ( A x. B ) ) |
30 |
22 23 24 29
|
syl3anc |
|- ( ph -> ( ( mulGrp ` CCfld ) gsum <" A B "> ) = ( A x. B ) ) |
31 |
|
2nn0 |
|- 2 e. NN0 |
32 |
|
hashfzo0 |
|- ( 2 e. NN0 -> ( # ` ( 0 ..^ 2 ) ) = 2 ) |
33 |
31 32
|
mp1i |
|- ( ph -> ( # ` ( 0 ..^ 2 ) ) = 2 ) |
34 |
33
|
oveq2d |
|- ( ph -> ( 1 / ( # ` ( 0 ..^ 2 ) ) ) = ( 1 / 2 ) ) |
35 |
30 34
|
oveq12d |
|- ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B "> ) ^c ( 1 / ( # ` ( 0 ..^ 2 ) ) ) ) = ( ( A x. B ) ^c ( 1 / 2 ) ) ) |
36 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
37 |
20 36
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
38 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
39 |
25 38
|
gsumws2 |
|- ( ( CCfld e. Mnd /\ A e. CC /\ B e. CC ) -> ( CCfld gsum <" A B "> ) = ( A + B ) ) |
40 |
37 23 24 39
|
syl3anc |
|- ( ph -> ( CCfld gsum <" A B "> ) = ( A + B ) ) |
41 |
40 33
|
oveq12d |
|- ( ph -> ( ( CCfld gsum <" A B "> ) / ( # ` ( 0 ..^ 2 ) ) ) = ( ( A + B ) / 2 ) ) |
42 |
19 35 41
|
3brtr3d |
|- ( ph -> ( ( A x. B ) ^c ( 1 / 2 ) ) <_ ( ( A + B ) / 2 ) ) |