| Step | Hyp | Ref | Expression | 
						
							| 1 |  | amgm2d.0 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | amgm2d.1 |  |-  ( ph -> B e. RR+ ) | 
						
							| 3 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 4 |  | fzofi |  |-  ( 0 ..^ 2 ) e. Fin | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( 0 ..^ 2 ) e. Fin ) | 
						
							| 6 |  | 2nn |  |-  2 e. NN | 
						
							| 7 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) | 
						
							| 8 | 6 7 | mpbir |  |-  0 e. ( 0 ..^ 2 ) | 
						
							| 9 | 8 | ne0ii |  |-  ( 0 ..^ 2 ) =/= (/) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( 0 ..^ 2 ) =/= (/) ) | 
						
							| 11 | 1 2 | s2cld |  |-  ( ph -> <" A B "> e. Word RR+ ) | 
						
							| 12 |  | wrdf |  |-  ( <" A B "> e. Word RR+ -> <" A B "> : ( 0 ..^ ( # ` <" A B "> ) ) --> RR+ ) | 
						
							| 13 |  | s2len |  |-  ( # ` <" A B "> ) = 2 | 
						
							| 14 | 13 | eqcomi |  |-  2 = ( # ` <" A B "> ) | 
						
							| 15 | 14 | oveq2i |  |-  ( 0 ..^ 2 ) = ( 0 ..^ ( # ` <" A B "> ) ) | 
						
							| 16 | 15 | feq2i |  |-  ( <" A B "> : ( 0 ..^ 2 ) --> RR+ <-> <" A B "> : ( 0 ..^ ( # ` <" A B "> ) ) --> RR+ ) | 
						
							| 17 | 12 16 | sylibr |  |-  ( <" A B "> e. Word RR+ -> <" A B "> : ( 0 ..^ 2 ) --> RR+ ) | 
						
							| 18 | 11 17 | syl |  |-  ( ph -> <" A B "> : ( 0 ..^ 2 ) --> RR+ ) | 
						
							| 19 | 3 5 10 18 | amgmlem |  |-  ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B "> ) ^c ( 1 / ( # ` ( 0 ..^ 2 ) ) ) ) <_ ( ( CCfld gsum <" A B "> ) / ( # ` ( 0 ..^ 2 ) ) ) ) | 
						
							| 20 |  | cnring |  |-  CCfld e. Ring | 
						
							| 21 | 3 | ringmgp |  |-  ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 22 | 20 21 | mp1i |  |-  ( ph -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 23 | 1 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 24 | 2 | rpcnd |  |-  ( ph -> B e. CC ) | 
						
							| 25 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 26 | 3 25 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 27 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 28 | 3 27 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 29 | 26 28 | gsumws2 |  |-  ( ( ( mulGrp ` CCfld ) e. Mnd /\ A e. CC /\ B e. CC ) -> ( ( mulGrp ` CCfld ) gsum <" A B "> ) = ( A x. B ) ) | 
						
							| 30 | 22 23 24 29 | syl3anc |  |-  ( ph -> ( ( mulGrp ` CCfld ) gsum <" A B "> ) = ( A x. B ) ) | 
						
							| 31 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 32 |  | hashfzo0 |  |-  ( 2 e. NN0 -> ( # ` ( 0 ..^ 2 ) ) = 2 ) | 
						
							| 33 | 31 32 | mp1i |  |-  ( ph -> ( # ` ( 0 ..^ 2 ) ) = 2 ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ph -> ( 1 / ( # ` ( 0 ..^ 2 ) ) ) = ( 1 / 2 ) ) | 
						
							| 35 | 30 34 | oveq12d |  |-  ( ph -> ( ( ( mulGrp ` CCfld ) gsum <" A B "> ) ^c ( 1 / ( # ` ( 0 ..^ 2 ) ) ) ) = ( ( A x. B ) ^c ( 1 / 2 ) ) ) | 
						
							| 36 |  | ringmnd |  |-  ( CCfld e. Ring -> CCfld e. Mnd ) | 
						
							| 37 | 20 36 | mp1i |  |-  ( ph -> CCfld e. Mnd ) | 
						
							| 38 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 39 | 25 38 | gsumws2 |  |-  ( ( CCfld e. Mnd /\ A e. CC /\ B e. CC ) -> ( CCfld gsum <" A B "> ) = ( A + B ) ) | 
						
							| 40 | 37 23 24 39 | syl3anc |  |-  ( ph -> ( CCfld gsum <" A B "> ) = ( A + B ) ) | 
						
							| 41 | 40 33 | oveq12d |  |-  ( ph -> ( ( CCfld gsum <" A B "> ) / ( # ` ( 0 ..^ 2 ) ) ) = ( ( A + B ) / 2 ) ) | 
						
							| 42 | 19 35 41 | 3brtr3d |  |-  ( ph -> ( ( A x. B ) ^c ( 1 / 2 ) ) <_ ( ( A + B ) / 2 ) ) |