Metamath Proof Explorer


Theorem gtnelicc

Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses gtnelicc.a
|- ( ph -> A e. RR* )
gtnelicc.b
|- ( ph -> B e. RR )
gtnelicc.c
|- ( ph -> C e. RR* )
gtnelicc.bltc
|- ( ph -> B < C )
Assertion gtnelicc
|- ( ph -> -. C e. ( A [,] B ) )

Proof

Step Hyp Ref Expression
1 gtnelicc.a
 |-  ( ph -> A e. RR* )
2 gtnelicc.b
 |-  ( ph -> B e. RR )
3 gtnelicc.c
 |-  ( ph -> C e. RR* )
4 gtnelicc.bltc
 |-  ( ph -> B < C )
5 2 rexrd
 |-  ( ph -> B e. RR* )
6 xrltnle
 |-  ( ( B e. RR* /\ C e. RR* ) -> ( B < C <-> -. C <_ B ) )
7 5 3 6 syl2anc
 |-  ( ph -> ( B < C <-> -. C <_ B ) )
8 4 7 mpbid
 |-  ( ph -> -. C <_ B )
9 8 intnand
 |-  ( ph -> -. ( A <_ C /\ C <_ B ) )
10 elicc4
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) )
11 1 5 3 10 syl3anc
 |-  ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) )
12 9 11 mtbird
 |-  ( ph -> -. C e. ( A [,] B ) )