| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gtnelicc.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
gtnelicc.b |
|- ( ph -> B e. RR ) |
| 3 |
|
gtnelicc.c |
|- ( ph -> C e. RR* ) |
| 4 |
|
gtnelicc.bltc |
|- ( ph -> B < C ) |
| 5 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 6 |
|
xrltnle |
|- ( ( B e. RR* /\ C e. RR* ) -> ( B < C <-> -. C <_ B ) ) |
| 7 |
5 3 6
|
syl2anc |
|- ( ph -> ( B < C <-> -. C <_ B ) ) |
| 8 |
4 7
|
mpbid |
|- ( ph -> -. C <_ B ) |
| 9 |
8
|
intnand |
|- ( ph -> -. ( A <_ C /\ C <_ B ) ) |
| 10 |
|
elicc4 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| 11 |
1 5 3 10
|
syl3anc |
|- ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| 12 |
9 11
|
mtbird |
|- ( ph -> -. C e. ( A [,] B ) ) |