Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
h2h.2 | |- U e. NrmCVec |
||
h2hm.4 | |- ~H = ( BaseSet ` U ) |
||
h2hm.5 | |- D = ( IndMet ` U ) |
||
Assertion | h2hmetdval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h2h.1 | |- U = <. <. +h , .h >. , normh >. |
|
2 | h2h.2 | |- U e. NrmCVec |
|
3 | h2hm.4 | |- ~H = ( BaseSet ` U ) |
|
4 | h2hm.5 | |- D = ( IndMet ` U ) |
|
5 | 1 2 3 | h2hvs | |- -h = ( -v ` U ) |
6 | 1 2 | h2hnm | |- normh = ( normCV ` U ) |
7 | 3 5 6 4 | imsdval | |- ( ( U e. NrmCVec /\ A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |
8 | 2 7 | mp3an1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |