Metamath Proof Explorer


Theorem h2hmetdval

Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1
|- U = <. <. +h , .h >. , normh >.
h2h.2
|- U e. NrmCVec
h2hm.4
|- ~H = ( BaseSet ` U )
h2hm.5
|- D = ( IndMet ` U )
Assertion h2hmetdval
|- ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) )

Proof

Step Hyp Ref Expression
1 h2h.1
 |-  U = <. <. +h , .h >. , normh >.
2 h2h.2
 |-  U e. NrmCVec
3 h2hm.4
 |-  ~H = ( BaseSet ` U )
4 h2hm.5
 |-  D = ( IndMet ` U )
5 1 2 3 h2hvs
 |-  -h = ( -v ` U )
6 1 2 h2hnm
 |-  normh = ( normCV ` U )
7 3 5 6 4 imsdval
 |-  ( ( U e. NrmCVec /\ A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) )
8 2 7 mp3an1
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A D B ) = ( normh ` ( A -h B ) ) )