| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramval.c |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 3 | 1 | hashbcval |  |-  ( ( A e. V /\ 0 e. NN0 ) -> ( A C 0 ) = { x e. ~P A | ( # ` x ) = 0 } ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( A e. V -> ( A C 0 ) = { x e. ~P A | ( # ` x ) = 0 } ) | 
						
							| 5 |  | hasheq0 |  |-  ( x e. _V -> ( ( # ` x ) = 0 <-> x = (/) ) ) | 
						
							| 6 | 5 | elv |  |-  ( ( # ` x ) = 0 <-> x = (/) ) | 
						
							| 7 | 6 | anbi2i |  |-  ( ( x e. ~P A /\ ( # ` x ) = 0 ) <-> ( x e. ~P A /\ x = (/) ) ) | 
						
							| 8 |  | id |  |-  ( x = (/) -> x = (/) ) | 
						
							| 9 |  | 0elpw |  |-  (/) e. ~P A | 
						
							| 10 | 8 9 | eqeltrdi |  |-  ( x = (/) -> x e. ~P A ) | 
						
							| 11 | 10 | pm4.71ri |  |-  ( x = (/) <-> ( x e. ~P A /\ x = (/) ) ) | 
						
							| 12 | 7 11 | bitr4i |  |-  ( ( x e. ~P A /\ ( # ` x ) = 0 ) <-> x = (/) ) | 
						
							| 13 | 12 | abbii |  |-  { x | ( x e. ~P A /\ ( # ` x ) = 0 ) } = { x | x = (/) } | 
						
							| 14 |  | df-rab |  |-  { x e. ~P A | ( # ` x ) = 0 } = { x | ( x e. ~P A /\ ( # ` x ) = 0 ) } | 
						
							| 15 |  | df-sn |  |-  { (/) } = { x | x = (/) } | 
						
							| 16 | 13 14 15 | 3eqtr4i |  |-  { x e. ~P A | ( # ` x ) = 0 } = { (/) } | 
						
							| 17 | 4 16 | eqtrdi |  |-  ( A e. V -> ( A C 0 ) = { (/) } ) |