Metamath Proof Explorer


Theorem hashbc0

Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
Assertion hashbc0 ( 𝐴𝑉 → ( 𝐴 𝐶 0 ) = { ∅ } )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 0nn0 0 ∈ ℕ0
3 1 hashbcval ( ( 𝐴𝑉 ∧ 0 ∈ ℕ0 ) → ( 𝐴 𝐶 0 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 0 } )
4 2 3 mpan2 ( 𝐴𝑉 → ( 𝐴 𝐶 0 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 0 } )
5 hasheq0 ( 𝑥 ∈ V → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ ) )
6 5 elv ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ )
7 6 anbi2i ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥 = ∅ ) )
8 id ( 𝑥 = ∅ → 𝑥 = ∅ )
9 0elpw ∅ ∈ 𝒫 𝐴
10 8 9 eqeltrdi ( 𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴 )
11 10 pm4.71ri ( 𝑥 = ∅ ↔ ( 𝑥 ∈ 𝒫 𝐴𝑥 = ∅ ) )
12 7 11 bitr4i ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 0 ) ↔ 𝑥 = ∅ )
13 12 abbii { 𝑥 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 0 ) } = { 𝑥𝑥 = ∅ }
14 df-rab { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 0 } = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 0 ) }
15 df-sn { ∅ } = { 𝑥𝑥 = ∅ }
16 13 14 15 3eqtr4i { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 0 } = { ∅ }
17 4 16 eqtrdi ( 𝐴𝑉 → ( 𝐴 𝐶 0 ) = { ∅ } )