Metamath Proof Explorer


Theorem hashbcval

Description: Value of the "binomial set", the set of all N -element subsets of A . (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
Assertion hashbcval ( ( 𝐴𝑉𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 elex ( 𝐴𝑉𝐴 ∈ V )
3 pwexg ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V )
4 3 adantr ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ) → 𝒫 𝐴 ∈ V )
5 rabexg ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ V )
6 4 5 syl ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ V )
7 fveqeq2 ( 𝑏 = 𝑥 → ( ( ♯ ‘ 𝑏 ) = 𝑖 ↔ ( ♯ ‘ 𝑥 ) = 𝑖 ) )
8 7 cbvrabv { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } = { 𝑥 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑥 ) = 𝑖 }
9 simpl ( ( 𝑎 = 𝐴𝑖 = 𝑁 ) → 𝑎 = 𝐴 )
10 9 pweqd ( ( 𝑎 = 𝐴𝑖 = 𝑁 ) → 𝒫 𝑎 = 𝒫 𝐴 )
11 simpr ( ( 𝑎 = 𝐴𝑖 = 𝑁 ) → 𝑖 = 𝑁 )
12 11 eqeq2d ( ( 𝑎 = 𝐴𝑖 = 𝑁 ) → ( ( ♯ ‘ 𝑥 ) = 𝑖 ↔ ( ♯ ‘ 𝑥 ) = 𝑁 ) )
13 10 12 rabeqbidv ( ( 𝑎 = 𝐴𝑖 = 𝑁 ) → { 𝑥 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑥 ) = 𝑖 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
14 8 13 syl5eq ( ( 𝑎 = 𝐴𝑖 = 𝑁 ) → { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
15 14 1 ovmpoga ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ V ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
16 6 15 mpd3an3 ( ( 𝐴 ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
17 2 16 sylan ( ( 𝐴𝑉𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )