Metamath Proof Explorer


Theorem hashbccl

Description: The binomial set is a finite set. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
Assertion hashbccl ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 1 hashbcval ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } )
3 simpl ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ Fin )
4 pwfi ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin )
5 3 4 sylib ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → 𝒫 𝐴 ∈ Fin )
6 ssrab2 { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ⊆ 𝒫 𝐴
7 ssfi ( ( 𝒫 𝐴 ∈ Fin ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ⊆ 𝒫 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ Fin )
8 5 6 7 sylancl ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑁 } ∈ Fin )
9 2 8 eqeltrd ( ( 𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 𝐶 𝑁 ) ∈ Fin )